1
|
Neary B, Lin S, Qiu P. Methylation of CpG Sites as Biomarkers Predictive of Drug-Specific
Patient Survival in Cancer. Cancer Inform 2022; 21:11769351221131124. [PMID: 36340286 PMCID: PMC9634212 DOI: 10.1177/11769351221131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Though the development of targeted cancer drugs continues to accelerate,
doctors still lack reliable methods for predicting patient response to
standard-of-care therapies for most cancers. DNA methylation has been
implicated in tumor drug response and is a promising source of predictive
biomarkers of drug efficacy, yet the relationship between drug efficacy and
DNA methylation remains largely unexplored. Method: In this analysis, we performed log-rank survival analyses on patients grouped
by cancer and drug exposure to find CpG sites where binary methylation
status is associated with differential survival in patients treated with a
specific drug but not in patients with the same cancer who were not exposed
to that drug. We also clustered these drug-specific CpG sites based on
co-methylation among patients to identify broader methylation patterns that
may be related to drug efficacy, which we investigated for transcription
factor binding site enrichment using gene set enrichment analysis. Results: We identified CpG sites that were drug-specific predictors of survival in 38
cancer-drug patient groups across 15 cancers and 20 drugs. These included 11
CpG sites with similar drug-specific survival effects in multiple cancers.
We also identified 76 clusters of CpG sites with stronger associations with
patient drug response, many of which contained CpG sites in gene promoters
containing transcription factor binding sites. Conclusion: These findings are promising biomarkers of drug response for a variety of
drugs and contribute to our understanding of drug-methylation interactions
in cancer. Investigation and validation of these results could lead to the
development of targeted co-therapies aimed at manipulating methylation in
order to improve efficacy of commonly used therapies and could improve
patient survival and quality of life by furthering the effort toward drug
response prediction.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Shuting Lin
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering,
Georgia Institute of Technology and Emory University, Atlanta, GA, USA,Peng Qiu, Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic
Dr. NW, Atlanta, GA 30332 USA.
| |
Collapse
|
2
|
Hu C, Xu Y, Li F, Mi W, Yu H, Wang X, Wen X, Chen S, Li X, Xu Y, Zhang Y. Identifying and characterizing drug sensitivity-related lncRNA-TF-gene regulatory triplets. Brief Bioinform 2022; 23:6675752. [PMID: 36007239 PMCID: PMC9487635 DOI: 10.1093/bib/bbac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/19/2022] [Accepted: 08/06/2022] [Indexed: 11/15/2022] Open
Abstract
Recently, many studies have shown that lncRNA can mediate the regulation of TF-gene in drug sensitivity. However, there is still a lack of systematic identification of lncRNA-TF-gene regulatory triplets for drug sensitivity. In this study, we propose a novel analytic approach to systematically identify the lncRNA-TF-gene regulatory triplets related to the drug sensitivity by integrating transcriptome data and drug sensitivity data. Totally, 1570 drug sensitivity-related lncRNA-TF-gene triplets were identified, and 16 307 relationships were formed between drugs and triplets. Then, a comprehensive characterization was performed. Drug sensitivity-related triplets affect a variety of biological functions including drug response-related pathways. Phenotypic similarity analysis showed that the drugs with many shared triplets had high similarity in their two-dimensional structures and indications. In addition, Network analysis revealed the diverse regulation mechanism of lncRNAs in different drugs. Also, survival analysis indicated that lncRNA-TF-gene triplets related to the drug sensitivity could be candidate prognostic biomarkers for clinical applications. Next, using the random walk algorithm, the results of which we screen therapeutic drugs for patients across three cancer types showed high accuracy in the drug-cell line heterogeneity network based on the identified triplets. Besides, we developed a user-friendly web interface-DrugSETs (http://bio-bigdata.hrbmu.edu.cn/DrugSETs/) available to explore 1570 lncRNA-TF-gene triplets relevant with 282 drugs. It can also submit a patient’s expression profile to predict therapeutic drugs conveniently. In summary, our research may promote the study of lncRNAs in the drug resistance mechanism and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - He Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinran Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xin Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuaijun Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
Su M, Tang J, Yang D, Wu Z, Liao Q, Wang H, Xiao Y, Wang W. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int 2022; 22:240. [PMID: 35906593 PMCID: PMC9336008 DOI: 10.1186/s12935-022-02655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent an important group of endogenous RNAs with limit protein-encoding capability, with a length of more than 200 nucleotides. Emerging evidence have demonstrated that lncRNAs are greatly involved in multiple cancers by playing critical roles in tumor initiation and progression. Long intergenic non-protein coding RNA 460 (LINC00460), a novel cancer-related lncRNA, exhibits abnormal expression and oncogenic function in multiple cancers, and positively correlates with poor clinical characteristics of cancer patients. LINC00460 has also been shown to be a promising biomarker for diagnosis as well as prognostic evaluation in cancer patients. In this review, we briefly summarized recent knowledge on the expression, functional roles, molecular mechanisms, and diagnostic and prognostic values of LINC00460 in human malignancies.
Collapse
Affiliation(s)
- Min Su
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Jinming Tang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Yuhang Xiao
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China.
| | - Wenxiang Wang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|