1
|
Gu J, Zhou D. Long non-coding RNA MEG3 knockdown represses airway smooth muscle cells proliferation and migration via sponging miR-143-3p/FGF9 in asthma. J Cardiothorac Surg 2024; 19:314. [PMID: 38824534 PMCID: PMC11143653 DOI: 10.1186/s13019-024-02798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
Collapse
Affiliation(s)
- Jiaying Gu
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China
| | - Dengfeng Zhou
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China.
| |
Collapse
|
2
|
Zeng Y, Yang Z, Yang Y, Wang P. LncRNA NUTM2A-AS1 silencing inhibits glioma via miR-376a-3p/YAP1 axis. Cell Div 2024; 19:17. [PMID: 38730506 PMCID: PMC11088135 DOI: 10.1186/s13008-024-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The lncRNA NUTM2A-AS1 has been shown to be dysregulated in gastric cancer, while the roles in glioma is unclear. The aim of this study was to investigate the roles and potential mechanisms of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of glioma cells. The StarBase software and dual luciferase reporter assay were used to identify the relationship between lncRNA NUTM2A-AS1 and miR-376a-3p, and miR-376a-3p and YAP1. The expression of lncRNA NUTM2A-AS1, miR-376a-3p, and YAP1 in human glioma cell lines was detected by qRT-PCR. MTT and flow cytometry were used to detect the effects of lncRNA NUTM2A-AS1 or miR-376a-3p on the proliferation and apoptosis of U251 and A172 cells, respectively. In addition, changes of Bax and Bcl-2 expression in glioma cells were further verified by western blotting and qRT-PCR. The results showed that the expression of lncRNA NUTM2A-AS1 was elevated in glioma cell lines, while miR-376a-3p was decreased. LncRNA NUTM2A-AS1 was negatively correlated with miR-376a-3p. Silencing of lncRNA NUTM2A-AS1 enhanced the levels of miR-376a-3p, leading to reduced cell proliferation and increased apoptosis in glioma cells. YAP1 was a direct target of miR-376a-3p, and it was negatively regulated by miR-376a-3p in U251 and A172 cells. Further mechanistic studies suggested that miR-376a-3p reduced glioma cell proliferation and increased apoptosis by inhibiting YAP1 expression. In addition, lncRNA NUTM2A-AS1 positively regulated of YAP1 expression in glioma cells. In conclusion, silencing of lncRNA NUTM2A-AS1 inhibited proliferation and induced apoptosis in human glioma cells via the miR-376a-3p/YAP1 axis.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Zhenyu Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yang Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
3
|
Rojas-Quintero J, Ochsner SA, New F, Divakar P, Yang CX, Wu TD, Robinson J, Chandrashekar DS, Banovich NE, Rosas IO, Sauler M, Kheradmand F, Gaggar A, Margaroli C, San Jose Estepar R, McKenna NJ, Polverino F. Spatial Transcriptomics Resolve an Emphysema-Specific Lymphoid Follicle B Cell Signature in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:48-58. [PMID: 37934672 PMCID: PMC10870877 DOI: 10.1164/rccm.202303-0507le] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.
Collapse
Affiliation(s)
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Felicia New
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Prajan Divakar
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Chen Xi Yang
- Center for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jerid Robinson
- Field Application Scientists, Nanostring Biotechnologies, Seattle, Washington
| | | | | | | | - Maor Sauler
- Pulmonary and Critical Care Medicine, Yale University, New Haven, Connecticut
| | - Farrah Kheradmand
- Pulmonary Division, Department of Medicine, and
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Amit Gaggar
- Pulmonary and Critical Care Medicine, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Camilla Margaroli
- Pathology – Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neil J. McKenna
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | | |
Collapse
|
4
|
Taube K, Noreikiene K, Kahar S, Gross R, Ozerov M, Vasemägi A. Subtle transcriptomic response of Eurasian perch ( Perca fluviatilis) associated with Triaenophorus nodulosus plerocercoid infection. Int J Parasitol Parasites Wildl 2023; 22:146-154. [PMID: 37869060 PMCID: PMC10585624 DOI: 10.1016/j.ijppaw.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Determining the physiological effects of parasites and characterizing genes involved in host responses to infections are essential to improving our understanding of host-parasite interactions and their ecological and evolutionary consequences. This task, however, is complicated by high diversity and complex life histories of many parasite species. The use of transcriptomics in the context of wild-caught specimens can help ameliorate this by providing both qualitative and quantitative information on gene expression patterns in response to parasites in specific host organs and tissues. Here, we evaluated the physiological impact of the widespread parasite, the pike tapeworm (Triaenophorus nodulosus), on its second intermediate host, the Eurasian perch (Perca fluviatilis). We used an RNAseq approach to analyse gene expression in the liver, the target organ of T. nodulosus plerocercoids, and spleen which is one of the main immune organs in teleost fishes. We compared perch collected from multiple lakes consisting of individuals with (n = 8) and without (n = 6) T. nodulosus plerocercoids in the liver. Results revealed a small number of differentially expressed genes (DEGs, adjusted p-value ≤0.05) in both spleen (n = 22) and liver (n = 10). DEGs in spleen consisted of mostly upregulated immune related genes (e.g., JUN, SIK1, THSB1), while those in the liver were often linked to metabolic functions (e.g., FABP1, CADM4, CDAB). However, Gene Ontology (GO) analysis showed lack of functional enrichment among DEGs. This study demonstrates that Eurasian perch displays a subtle response at a gene expression level to T. nodulosus plerocercoid infection. Given that plerocercoids are low-metabolic activity transmission stages, our results suggest that moderate T. nodulosus plerocercoid infection most likely does not provoke an extensive host immune response and have relatively low physiological costs for the host. Our findings illustrate that not all conspicuous infections have severe effects on host gene regulation.
Collapse
Affiliation(s)
- Konrad Taube
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius, Lithuania
| | - Siim Kahar
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Mikhail Ozerov
- Biodiversity Unit, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Anti Vasemägi
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
- Swedish University of Agricultural Sciences, Sötvattenslaboratoriet, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| |
Collapse
|
5
|
Li J, Wang Z. A novel NUTM2A-AS1/miR-769–5p axis regulates LPS-evoked damage in human dental pulp cells via the TLR4/MYD88/NF-κB signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Lin Y, Qi X, Chen J, Shen B. Multivariate competing endogenous RNA network characterization for cancer MicroRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. PRECISION CLINICAL MEDICINE 2022; 5:pbac001. [PMID: 35821682 PMCID: PMC9267254 DOI: 10.1093/pcmedi/pbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNAs (miRNAs) are post-transcriptional regulators with potential as biomarkers for cancer management. Data-driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs and spongers. However, there are currently no general rules for ceRNA network-based biomarker prioritization. Methods and results In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability in the human long non-coding RNA (lncRNA)–miRNA–messenger RNAs (mRNA) network was comprehensively analyzed, and the single-line regulatory or competing mode among miRNAs, lncRNAs, and mRNAs was characterized and quantified as statistical evidence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of 12 miRNAs as putative biomarkers from the metastatic PCa-specific lncRNA–miRNA–mRNA network and nine of them have been previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments demonstrated the power of miR-26b-5p, miR-130a-3p, and miR-363-3p as novel candidates for predicting PCa metastasis. Moreover, PCa-associated pathways such as prostate cancer signaling, ERK/MAPK signaling, and TGF-β signaling were significantly enriched by targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis. Conclusions A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the identified miRNAs.
Collapse
Affiliation(s)
- Yuxin Lin
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jing Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
| |
Collapse
|
7
|
Targeting lncRNA PSMA3-AS1, a Prognostic Marker, Suppresses Malignant Progression of Oral Squamous Cell Carcinoma. DISEASE MARKERS 2021; 2021:3138046. [PMID: 34457087 PMCID: PMC8397548 DOI: 10.1155/2021/3138046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Objective Oral squamous cell carcinoma (OSCC) represents the most common maxillofacial malignancy. This study elucidated the clinicopathological value and molecular mechanisms of PSMA3 antisense RNA 1 (PSMA3-AS1) in OSCC. Methods Totally, 135 OSCC patients were recruited. PSMA3-AS1 expression and its prognostic value were assessed in this cohort. si-PSMA3-AS1 was transfected into HN4 and CAL-27 OSCC cells. Then, cell proliferation was evaluated by CCK-8, colony formation, and EdU staining. Migration and invasion were investigated through wound healing, transwell, and western blot. The PSMA3-AS1/miR-136-5p and miR-136-5p/FN1 interactions were validated by dual luciferase report, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot. Results PSMA3-AS1 upregulation was determined in OSCC tissues. The upregulation indicated pessimistic patients' outcomes. Multivariate Cox regression analyses confirmed PSMA3-AS1 as an independent prognostic indicator. Its upregulation was also found in OSCC cells. Under transfection with si-PSMA3-AS1, proliferation, migration, and invasion were all restrained in HN4 and CAL-27 OSCC cells. Furthermore, its knockdown induced the increase in E-cadherin expression and the reduction in N-cadherin and Vimentin expression. PSMA3-AS1 was a sponge of miR-136-5p. Mutual inhibition was found between two and the interactions were confirmed by dual luciferase report. It was confirmed that FN1 was a target of miR-136-5p. FN1 expression was increased by miR-136-5p inhibitors, which was lessened by si-PSMA3-AS1 cotransfection. Conclusion Collectively, PSMA3-AS1 as a risk factor facilitated malignant behaviors of OSCC cells, related to the miR-136-5p/FN1 axis. Hence, PSMA3-AS1 as a potential therapeutic target for OSCC deserved further exploration.
Collapse
|
8
|
Yu B, Wang B, Wu Z, Wu C, Ling J, Gao X, Zeng H. LncRNA SNHG8 Promotes Proliferation and Inhibits Apoptosis of Diffuse Large B-Cell Lymphoma via Sponging miR-335-5p. Front Oncol 2021; 11:650287. [PMID: 33816305 PMCID: PMC8017314 DOI: 10.3389/fonc.2021.650287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023] Open
Abstract
Long-chain non-coding RNAs (LncRNAs) are expressed in diffuse large B-cell lymphoma (DLBCL) tissues and have played a regulatory role in DLBCL with a cancer-promoting effect. In this study, the role of LncRNA SNHG8 in the regulation of DLBCL cells is investigated, and its underlying mechanism is explored. The database of the Gene Expression Profiling Interactive Analysis (GEPIA) was searched, and the expression of SNHG8 in DLBCL and normal tissues was examined. The expression of SNHG8 was evaluated in several DLBCL cell lines and a normal lymphocyte cell line. It was found that SNHG8 was overexpressed in DLBCL tissues and cells in comparison with their normal counterparts. The short hairpin RNA (shRNA) plasmids of SNHG8 were transfected into DLBCL cells to knockdown the expression of SNHG8, followed by assays of proliferation, colony formation, apoptosis, and related protein expression. The results showed that the knockdown of SNHG8 significantly inhibited DLBCL cell proliferation and colony formation while promoting cell apoptosis. Moreover, the knockdown of SNHG8 reduced the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and Bcl-2 and enhanced the expression of Bax and cleaved caspase 3/9. MiR-335-5p was predicted to be a potential target of SNHG8 by using the bioinformatics analysis, and the interaction between the two was validated by using the dual luciferase assay. In addition, the knockdown of SNHG8 increased the level of miR-335-5p, whereas miR-335-5p mimic decreased the expression of SNHG8. Finally, U2932 cells were co-transfected with or without sh-SNHG8 and miR-335-5p inhibitors, whose proliferation, colony formation, and apoptosis were determined subsequently. It was demonstrated that the presence of an miR-335-5p inhibitor partially canceled the inhibitory effects of the knockdown of SNHG8 on DLBCL cell proliferation and colony formation and the stimulating effects of the knockdown of SNHG8 on cell apoptosis. Taken together, our study suggests that lncRNA SNHG8 exerts a cancer-promoting effect on DLBCL via targeting miR-335-5p.
Collapse
Affiliation(s)
- Bing Yu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Wang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuman Wu
- Emergency Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chengnian Wu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Ling
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyan Gao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huilan Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|