1
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Horánszky A, Shashikadze B, Elkhateib R, Lombardo SD, Lamberto F, Zana M, Menche J, Fröhlich T, Dinnyés A. Proteomics and disease network associations evaluation of environmentally relevant Bisphenol A concentrations in a human 3D neural stem cell model. Front Cell Dev Biol 2023; 11:1236243. [PMID: 37664457 PMCID: PMC10472293 DOI: 10.3389/fcell.2023.1236243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Bisphenol A (BPA) exposure is associated with a plethora of neurodevelopmental abnormalities and brain disorders. Previous studies have demonstrated BPA-induced perturbations to critical neural stem cell (NSC) characteristics, such as proliferation and differentiation, although the underlying molecular mechanisms remain under debate. The present study evaluated the effects of a repeated-dose exposure of environmentally relevant BPA concentrations during the in vitro 3D neural induction of human induced pluripotent stem cells (hiPSCs), emulating a chronic exposure scenario. Firstly, we demonstrated that our model is suitable for NSC differentiation during the early stages of embryonic brain development. Our morphological image analysis showed that BPA exposure at 0.01, 0.1 and 1 µM decreased the average spheroid size by day 21 (D21) of the neural induction, while no effect on cell viability was detected. No alteration to the rate of the neural induction was observed based on the expression of key neural lineage and neuroectodermal transcripts. Quantitative proteomics at D21 revealed several differentially abundant proteins across all BPA-treated groups with important functions in NSC proliferation and maintenance (e.g., FABP7, GPC4, GAP43, Wnt-8B, TPPP3). Additionally, a network analysis demonstrated alterations to the glycolytic pathway, potentially implicating BPA-induced changes to glycolytic signalling in NSC proliferation impairments, as well as the pathophysiology of brain disorders including intellectual disability, autism spectrum disorders, and amyotrophic lateral sclerosis (ALS). This study enhances the current understanding of BPA-related NSC aberrations based mostly on acute, often high dose exposures of rodent in vivo and in vitro models and human GWAS data in a novel human 3D cell-based model with real-life scenario relevant prolonged and low-level exposures, offering further mechanistic insights into the ramifications of BPA exposure on the developing human brain and consequently, later life neurological disorders.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Federica Lamberto
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Cabrita A, Medeiros AM, Pereira T, Rodrigues AS, Kranendonk M, Mendes CS. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience 2022; 25:104541. [PMID: 35769875 PMCID: PMC9234254 DOI: 10.1016/j.isci.2022.104541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chlorpyrifos (CPS)) and putative (β-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds. Alternatives to mammalian testing are needed to detect developmental neurotoxicity The pesticide chlorpyrifos causes partial lethality and motor dysfunction Non-lethal levels of BMAA induce motor dysfunction in a dose-dependent manner Kinematic profiling of adult Drosophila can identify developmental neurotoxicity
Collapse
Affiliation(s)
- Ana Cabrita
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandra M. Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Telmo Pereira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| | - César S. Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| |
Collapse
|