1
|
Wang D, Yang H, Ma S, Liu T, Yan M, Dong M, Zhang M, Zhang T, Zhang X, Xu L, Huang X, Chen H. Transcriptomic Changes and Regulatory Networks Associated with Resistance to Mastitis in Xinjiang Brown Cattle. Genes (Basel) 2024; 15:465. [PMID: 38674399 PMCID: PMC11049461 DOI: 10.3390/genes15040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Xinjiang brown cattle are highly resistant to disease and tolerant of roughage feeding. The identification of genes regulating mastitis resistance in Xinjiang brown cattle is a novel means of genetic improvement. In this study, the blood levels of IL-1β, IL-6, IL-10, TNF-α, and TGF-β in Xinjiang brown cattle with high and low somatic cell counts (SCCs) were investigated, showing that cytokine levels were higher in cattle with high SCCs. The peripheral blood transcriptomic profiles of healthy and mastitis-affected cattle were constructed by RNA-seq. Differential expression analysis identified 1632 differentially expressed mRNAs (DE-mRNAs), 1757 differentially expressed lncRNAs (DE-lncRNAs), and 23 differentially expressed circRNAs (DE-circRNAs), which were found to be enriched in key pathways such as PI3K/Akt, focal adhesion, and ECM-receptor interactions. Finally, ceRNA interaction networks were constructed using the differentially expressed genes and ceRNAs. It was found that keynote genes or mRNAs were also enriched in pathways such as PI3K-Akt, cholinergic synapses, cell adhesion molecules, ion binding, cytokine receptor activity, and peptide receptor activity, suggesting that the key genes and ncRNAs in the network may play an important role in the regulation of bovine mastitis.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Haiyan Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Shengchao Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Tingting Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Mengjie Yan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Mingming Dong
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Tao Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Xiaoxue Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Lei Xu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (D.W.); (S.M.); (T.L.); (M.Y.); (M.D.); (M.Z.); (T.Z.); (X.Z.); (L.X.)
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China;
| |
Collapse
|
2
|
Reis HBD, Carvalho ME, Espigolan R, Poleti MD, Ambrizi DR, Berton MP, Ferraz JBS, de Mattos Oliveira EC, Eler JP. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites 2023; 14:6. [PMID: 38276296 PMCID: PMC10818672 DOI: 10.3390/metabo14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
The meat market has enormous importance for the world economy, and the quality of the product offered to the consumer is fundamental for the success of the sector. In this study, we analyzed a database which contained information on 2470 animals from a commercial farm in the state of São Paulo, Brazil. Of this total, 2181 animals were genotyped, using 777,962 single-nucleotide polymorphisms (SNPs). After quality control analysis, 468,321 SNPs provided information on the number of genotyped animals. Genome-wide association analyses (GWAS) were performed for the characteristics of the rib eye area (REA), subcutaneous fat thickness (SFT), shear force at 7 days' ageing (SF7), and intramuscular fat (IMF), with the aid of the single-step genomic best linear unbiased prediction (ssGBLUP) method, with the purpose of identifying possible genomic windows (~1 Mb) responsible for explaining at least 0.5% of the genetic variance of the traits under analysis (≥0.5%). These genomic regions were used in a gene search and enrichment analyses using MeSH terms. The distributed heritability coefficients were 0.14, 0.20, 0.18, and 0.21 for REA, SFT, SF7, and IMF, respectively. The GWAS results indicated significant genomic windows for the traits of interest in a total of 17 chromosomes. Enrichment analyses showed the following significant terms (FDR ≤ 0.05) associated with the characteristics under study: for the REA, heat stress disorders and life cycle stages; for SFT, insulin and nonesterified fatty acids; for SF7, apoptosis and heat shock proteins (HSP27); and for IMF, metalloproteinase 2. In addition, KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis allowed us to highlight important metabolic pathways related to the studied phenotypes, such as the growth hormone synthesis, insulin-signaling, fatty acid metabolism, and ABC transporter pathways. The results obtained provide a better understanding of the molecular processes involved in the expression of the studied characteristics and may contribute to the design of selection strategies and future studies aimed at improving the productivity of Nellore cattle.
Collapse
Affiliation(s)
- Hugo Borges Dos Reis
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Minos Esperândio Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Rafael Espigolan
- Department of Animal Science and Biological Sciences, Federal University of Santa Maria (UFSM), Av. Independencia, 3751, Palmeira das Missões 98300-000, RS, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Dewison Ricardo Ambrizi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Mariana Piatto Berton
- School of Agricultural and Veterinary Studies (FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Elisângela Chicaroni de Mattos Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| |
Collapse
|
3
|
Dehghanian Reyhan V, Ghafouri F, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Comparative Transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA Regulatory Network Analyses Identify Molecular Mechanisms Associated with Intramuscular Fat Content in Beef Cattle. Animals (Basel) 2023; 13:2598. [PMID: 37627391 PMCID: PMC10451991 DOI: 10.3390/ani13162598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is controlled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and 374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU, CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying phenotypic differences in IMF provided novel insights into molecular mechanisms associated with meat quality.
Collapse
Affiliation(s)
- Vahid Dehghanian Reyhan
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Farzad Ghafouri
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
| |
Collapse
|
4
|
Liu L, Zhou X, Chen J, Li X. Potential of ATP5MG to Treat Metabolic Syndrome-Associated Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:921778. [PMID: 35935642 PMCID: PMC9355403 DOI: 10.3389/fcvm.2022.921778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Metabolic syndrome-associated cardiovascular disease (MetS-CVD) is a cluster of metabolism-immunity highly integrated diseases. Emerging evidence hints that mitochondrial energy metabolism may be involved in MetS-CVD development. The physiopathological role of ATP5MG, a subunit of the F0 ATPase complex, has not been fully elucidated. METHODS In this study, we selected ATP5MG to identify the immunity-mediated pathway and mine drugs targeting this pathway for treating MetS-CVD. Using big data from public databases, we dissected co-expressed RNA (coRNA), competing endogenous RNA (ceRNA), and interacting RNA (interRNA) genes for ATP5MG. RESULTS It was identified that ATP5MG may form ceRNA with COX5A through hsa-miR-142-5p and interplay with NDUFB8, SOD1, and MDH2 through RNA-RNA interaction under the immune pathway. We dug out 251 chemicals that may target this network and identified some of them as clinical drugs. We proposed five medicines for treating MetS-CVD. Interestingly, six drugs are being tested to treat COVID-19, which unexpectedly offers a new potential host-targeting antiviral strategy. CONCLUSION Collectively, we revealed the potential significance of the ATP5MG-centered network for developing drugs to treat MetS-CVD, which offers insights into the epigenetic regulation for metabolism-immunity highly integrated diseases.
Collapse
Affiliation(s)
- Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Shanghai, China
| | - Xinglu Zhou
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai, China
| | - Juan Chen
- Department of Obstetrics and Gynecology, Gongli Hospital, Naval Medical University, Shanghai, China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites 2022; 12:metabo12070640. [PMID: 35888764 PMCID: PMC9320084 DOI: 10.3390/metabo12070640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/06/2023] Open
Abstract
The present study explored changes in the meat metabolome of animals subjected to different finishing systems and growth rates. Thirty-six Angus × Nellore crossbred steers were used in a completely randomized design with four treatments: (1) feedlot system with high average daily gain (ADG; FH); (2) feedlot system with low ADG (FL); (3) pasture system with high ADG (PH); and (4) pasture system with low ADG (PL). After harvest and chilling, Longissimus thoracis (LT) muscle samples were taken for metabolite profile analysis using nuclear magnetic resonance. Spectrum was analyzed using chenomx software, and multi- and mega-variate data analyses were performed. The PLS-DA showed clear separation between FH and PL groups and overlap among treatments with different finishing systems but similar for matching ADG (FL and PH) treatments. Using a VIP cut-off of around 1.0, ATP and fumarate were shown to be greater in meat from PL cattle, while succinate, leucine, AMP, glutamate, carnosine, inosine, methionine, G1P, and choline were greater in meat from FH. Comparing FL and PH treatments, glutamine, carnosine, urea, NAD+, malonate, lactate, isoleucine, and alanine were greater in the meat of PH cattle, while G6P and betaine were elevated in that of FL cattle. Relevant pathways were also identified by differences in growth rate (FH versus PL) and finishing system were also noted. Growth rate caused a clear difference in meat metabolism that was highlighted by energy metabolism and associated pathways, while the feeding system tended to alter protein and lipid metabolism.
Collapse
|
6
|
Pham T, Knowles S, Bermingham E, Brown J, Hannaford R, Cameron-Smith D, Braakhuis A. Plasma Amino Acid Appearance and Status of Appetite Following a Single Meal of Red Meat or a Plant-Based Meat Analog: A Randomized Crossover Clinical Trial. Curr Dev Nutr 2022; 6:nzac082. [PMID: 35669048 PMCID: PMC9154224 DOI: 10.1093/cdn/nzac082] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Red meat is a nutrient-dense food and a dietary staple. A new generation of plant-based meat analogs (PBMAs) have been designed to mimic the experience of eating meat, but there is limited evidence about their digestive efficacy and nutritional quality. Objectives We compared the postprandial digestive response of a single meal containing meat commercially raised in New Zealand, including lamb, on-farm pasture-raised beef (Pasture), or grain-finished beef (Grain) with a PBMA (Beyond Burger; Beyond Meat) sold through consumer retail. The primary outcome was the appearance of amino acids in plasma. Secondary outcomes included glucose and insulin, appetite assessment, and anthropometry. Methods Thirty healthy men (20-34 y) participated in a double-blinded randomized crossover trial. Each consumed 1 of the 4 test meals on 4 occasions separated by a washout period of at least 1 wk, following an overnight fast. The meal was a burrito-style wrap containing meat or PBMAs, vegetables, salsa, and seasonings in a flour tortilla. The amount of Pasture, Grain, Lamb, or BB was 220 g raw (∼160 g cooked). Venous blood samples were collected over 4 h. Appetite and hunger status was scored with visual analog scales. Results Pre-meal amino acid concentrations in plasma did not differ by group (P > 0.9), although several nonessential amino acids differed strongly according to participant BMI. Postprandial amino acids peaked at 2-3 h in all groups. The BB meal produced significantly lower plasma concentrations of total, essential, branched-chain, and non-proteogenic amino acids than the Lamb, Pasture, or Grain meals, based on AUC. There were no significant differences between meal groups in scores for hunger, fullness, or cravings. Conclusions Red meat meals exhibited greater bioavailability of amino acids compared with the PBMA (BB). Pasture versus Grain origins of the beef had little influence on participants' responses. This trial was registered at ClinicalTrials.gov as NCT04545398.
Collapse
Affiliation(s)
- Toan Pham
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Scott Knowles
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Emma Bermingham
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Julie Brown
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rina Hannaford
- Bioinformatics and Statistics Team, AgResearch Ltd, Palmerston North, New Zealand
| | - David Cameron-Smith
- College of Engineering, Science and Environment, The University of Newcastle, Newcastle, Australia
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| | - Andrea Braakhuis
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Yang Y, Wang Y, Shan H, Zheng Y, Xuan Z, Hu J, Wei M, Wang Z, Liu Q, Li Z. Novel Insights into the Differences in Nutrition Value, Gene Regulation and Network Organization between Muscles from Pasture-Fed and Barn-Fed Goats. Foods 2022; 11:381. [PMID: 35159531 PMCID: PMC8834483 DOI: 10.3390/foods11030381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
The physiological and biochemical characters of muscles derived from pasture-fed or barn-fed black goats were detected, and RNA-seq was performed to reveal the underlying molecular mechanisms to identify how the pasture feeding affected the nutrition and flavor of the meat. We found that the branched chain amino acids, unsaturated fatty acids, and zinc in the muscle of pasture-fed goats were significantly higher than those in the barn-fed group, while the heavy metal elements, cholesterol, and low-density lipoprotein cholesterol were significantly lower. RNA-seq results showed that 1761 genes and 147 lncRNA transcripts were significantly differentially expressed between the pasture-fed and barn-fed group. Further analysis found that the differentially expressed genes were mainly enriched in the myogenesis and Glycerophospholipid metabolism pathway. A functional analysis of the lncRNA transcripts further highlighted the difference in fatty acid metabolism between the two feeding models. Our study provides novel insights into the gene regulation and network organization of muscles and could be potentially used for improving the quality of mutton.
Collapse
Affiliation(s)
- Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Zeyi Xuan
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530010, China; (Z.X.); (M.W.)
| | - Jinling Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Mingsong Wei
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530010, China; (Z.X.); (M.W.)
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| |
Collapse
|