1
|
Lin GW, Chen CK, Jiang TX, Liang YC, Tang PC, Wu P, Widelitz RB, Chen CF, Chuong CM. Molecular insights into region-specific sexual dichromatism: Comparative transcriptome analysis of red cheek pigmentation in zebra finches. PLoS Genet 2025; 21:e1011693. [PMID: 40354322 PMCID: PMC12068594 DOI: 10.1371/journal.pgen.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Feathers, the primary skin appendage covering the avian body, undergo dynamic phenotypic changes throughout a bird's life. Males and females of the same species can exhibit sexually dichromatic plumage colors which play a critical role in mating choice, survival, and ecological interactions. In this study, we investigate the molecular mechanisms underlying the changes of color that occur during the transition from juvenile to adult feathers, known as the secondary transition. We focus on sexual dichromatism of craniofacial plumage and use the male cheek domain of the zebra finch (Taeniopygia guttata) as the major model. The transcriptome of the cheek and scalp (crown) domains in males and females of wild-type and genetic color variants were compared. We found that (1) Craniofacial color patterning operates through two regulatory layers. The first layer involves transcription factor (TF) genes that define the cheek domain such as PITX1, PAX1, PAX6. The second layer comprises pigment-related genes responsible for specific colors, including male-biased TFs (SOX10 and DMRT1) and transporters associated with red pigment synthesis. (2) Surprisingly, ASIP, which controls pheomelanin production in other species, was expressed in both male (red) and female (gray) cheeks. Instead, PAX1 in cheek dermal fibroblasts may serve as an upstream regulator, potentially triggering the male-biased color pattern through PAX6 and SOX10. PAX6 and SOX10 in melanocytes potentially enhance the expression of GPR143, SLC45A2, and TMEM163, driving increased pheomelanin production in males. (3) Sexual dichromatism is associated with sex-linked genes on the Z chromosome, notably SLC45A2. In addition, motif analysis comparing the binding strength between regional transcription factors and melanogenesis genes suggests that craniofacial pigmentation may have evolved convergently in passerine birds. These findings provide novel insights into the molecular control of color patterning and lay the groundwork for further studies on avian sexual dichromatism and secondary feather transition.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, Zhu M. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals (Basel) 2024; 14:3111. [PMID: 39518834 PMCID: PMC11544815 DOI: 10.3390/ani14213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plumage color is a key trait for identifying waterfowl breeds with significant economic importance. A white-feathered group has recently emerged within the native Matahu duck population, presenting an opportunity for breeding new lines. However, the genetic basis for this plumage variation is still unknown, necessitating further research. This study aims to identify the genetic mechanisms underlying the emergence of white-feathered individuals in the Matahu duck population through combined genome and transcriptome analysis, providing insights for selective breeding and the development of new white-feathered lines. In this study, a total of 1344 selected genes and 1406 significantly differentially expressed genes were identified through selection signal analysis and transcriptomic analysis, respectively. The functional enrichment of these genes revealed several key signaling pathways, including those related to cGMP-PKG, cAMP, PI3K-Akt, and MAPK. Furthermore, important candidate genes involved in melanin biosynthesis, such as MITF, MC1R, TYR, TYRP1, and ABCB6, were identified. Notably, 107 genes were detected by both methods, and, among these, DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9 are suggested to play a role in melanin formation and potentially influence plumage traits. Through the integrative approach combining genomic selection signals and transcriptomic analyses, we identified several candidate genes directly associated with plumage color, including MITF, TYR, TYRP1, and MC1R, along with multiple signaling pathways linked to melanin formation. We hypothesize that the expression of DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9, detected by both methods, may be closely related to the regulation of plumage color traits. These findings provide a foundational basis for further research aimed at elucidating the genetic mechanisms governing plumage color variation in ducks.
Collapse
Affiliation(s)
- Pengwei Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Liu Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yadi Jing
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Meixia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chao Qi
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Xin Zhang
- Jining Animal Husbandry and Veterinary Career Development Centre, Jining 272002, China
| | - Xiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Zhansheng Liu
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Shuer Zhang
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Huo L, Zhang X, Pang Y, Qi Y, Ren S, Wu F, Shang Y, Xi J. Expression and Mutation of SLC45A2 Affects Iris Color in Quail. J Poult Sci 2024; 61:2024015. [PMID: 38818526 PMCID: PMC11130394 DOI: 10.2141/jpsa.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Iris color is a prominent phenotypic feature of quail. To understand the mechanism of melanin deposition related to quail iris color, iris tissues were selected from Beijing white and Chinese yellow quail for transcriptome analysis. Differentially expressed genes (DEGs) associated with pigmentation were identified using RNA sequencing and validated by quantitative real-time polymerase chain reaction (RT-qPCR). The identified single nucleotide polymorphisms were studied using bioinformatics and iris color correlation analyses. A total of 485 DEGs were obtained, with 223 upregulated and 262 downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Thirty-two genes were annotated using the GO database. Three important pigment synthesis pathways (Notch signaling, melanogenesis, and tyrosine metabolism) were identified in quail iris tissue (P < 0.05). The expression levels of solute carrier family 45 member 2 (SLC45A2), tyrosinase-related protein 1, vitamin D receptor, opsin 5, and docking protein 5 were significantly different between Beijing white and Chinese yellow quail, as verified by RT-qPCR. The c.1061C>T mutation in SLC45A2, which caused a single amino acid change at position 354 (threonine to methionine), was significantly associated with iris color in Beijing white and Chinese yellow quail, and might be the main reason for the different iris colors between these two quail species.
Collapse
Affiliation(s)
- Linke Huo
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Shiwei Ren
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| |
Collapse
|
4
|
Liu Y, Li G, Guo Z, Zhang H, Wei B, He D. Transcriptome analysis of sexual dimorphism in dorsal down coloration in goslings. BMC Genomics 2024; 25:505. [PMID: 38778258 PMCID: PMC11110362 DOI: 10.1186/s12864-024-10394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Zhanbao Guo
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Baozhi Wei
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China.
| |
Collapse
|
5
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Su P, Wu H, Huang Y, Lu X, Yin J, Zhang Q, Lan X. The Hoof Color of Australian White Sheep Is Associated with Genetic Variation of the MITF Gene. Animals (Basel) 2023; 13:3218. [PMID: 37893942 PMCID: PMC10603658 DOI: 10.3390/ani13203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Studying the characteristics of mammalian hoof colors is important for genetic improvements in animals. A deeper black hoof color is the standard for breeding purebred Australian White (AUW) sheep and this phenotype could be used as a phenotypic marker of purebred animals. We conducted a genome-wide association study (GWAS) analysis using restriction site associated DNA sequencing (RAD-seq) data from 577 Australian White sheep (black hoof color = 283, grey hoof color = 106, amber hoof color = 186) and performed association analysis utilizing the mixed linear model in EMMAX. The results of GWAS demonstrated that a specific single-nucleotide polymorphism (SNP; g. 33097911G>A) in intron 14 of the microphthalmia-associated transcription factor (MITF) gene was significantly associated with the hoof color in AUW sheep (p = 9.40 × 10-36). The MITF gene plays a key role in the development, differentiation, and functional regulation of melanocytes. Furthermore, the association between this locus and hoof color was validated in a cohort of 212 individuals (black hoof color = 122, grey hoof color = 38, amber hoof color = 52). The results indicated that the hoof color of AUW sheep with GG, AG, and AA genotypes tended to be black, grey, and amber, respectively. This study provided novel insights into hoof color genetics in AUW sheep, enhancing our comprehension of the genetic mechanisms underlying the diverse range of hoof colors. Our results agree with previous studies and provide molecular markers for marker-assisted selection for hoof color in sheep.
Collapse
Affiliation(s)
- Peng Su
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin 301607, China; (P.S.)
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Hui Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangming Huang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaofang Lu
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin 301607, China; (P.S.)
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 301607, China
| | - Jing Yin
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin 301607, China; (P.S.)
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 301607, China
| | - Qingfeng Zhang
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin 301607, China; (P.S.)
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 301607, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|