1
|
Liu F, Xu H, Ni W, Wang Y, Hong X, Li W, Yu L, Chen C, Wei C, Liu X, Zhu X. Temporal variation in DNA methylation during gonadal development in a reptile with temperature-dependent sex determination. Biol Reprod 2022; 107:1217-1227. [PMID: 35835578 DOI: 10.1093/biolre/ioac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
DNA methylation plays a significant role in transducing external environmental signals to a cellular response in reptiles; however, whether the methylation patterns are conserved across species remains unclear. Here, we examined the genome-wide DNA methylation differentiation between male and female hatchling gonads of the temperature-dependent sex determination (TSD) Mauremys mutica (M. mutica) using methylation-dependent restriction-site associated DNA sequencing (MethylRAD-seq) to test differentially methylated genes underlying sexual development. Several categories, including heat shock genes (HSP90A, HSP30C), histone- (KDM8) and ubiquitin-related genes (TRIM39), kinases (WNK3) and gonad differentiation or gonadal development related genes (HSD17B8, HSD17B12), were identified as candidates for future study. Additionally, we identified several regulatory pathways potentially mediating TSD thermosensitivity such as the GnRH signaling pathway and calcium signaling pathway. These findings provide evidence that sexually dimorphic DNA methylation may be associated with sex determination or sex differentiation in TSD M. mutica.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Haoyang Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038.,College of Life Science and Fisheries, Shanghai Ocean University, Shanghai, China, 201306
| | - Wei Ni
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038.,College of Life Science and Fisheries, Shanghai Ocean University, Shanghai, China, 201306
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Chengqing Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 51038.,College of Life Science and Fisheries, Shanghai Ocean University, Shanghai, China, 201306
| |
Collapse
|
2
|
Hu MY, Yu J, Lin JQ, Fang SG. Sex-Biased miRNAs in the Gonads of Adult Chinese Alligator ( Alligator sinensis) and Their Potential Roles in Sex Maintenance. Front Genet 2022; 13:843884. [PMID: 35432471 PMCID: PMC9008718 DOI: 10.3389/fgene.2022.843884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) is a category of single-stranded non-coding small RNA (sRNA) that regulates gene expression by targeting mRNA. It plays a key role in the temperature-dependent sex determination of Chinese alligator (Alligator sinensis), a reptile whose sex is determined solely by the temperature during the incubation period and remains stable thereafter. However, the potential function of miRNAs in the gonads of adult Chinese alligators is still unclear. Here, we prepared and sequenced sRNA libraries of adult female and male alligator gonads, from breeding (in summer) and hibernating (in winter) animals. We obtained 130 conserved miRNAs and 683 novel miRNAs, which were assessed for sex bias in summer and winter; a total of 65 miRNAs that maintained sex bias in both seasons were identified. A regulatory network of sex-biased miRNAs and genes was constructed. Sex-biased miRNAs targeted multiple genes in the meiosis pathway of adult Chinese alligator oocytes and the antagonistic gonadal function maintenance pathway, such as MOS, MYT1, DMRT1, and GDF9. Our study emphasizes the function of miRNA in the epigenetic mechanisms of sex maintenance in crocodilians.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jun Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Liu Y, Li X, Chen S, Wang L, Tan Y, Li X, Tang L, Zhang J, Wu D, Wu Y, Liu X, Zhu Y, Sheng J, Pan J, Jin L, Huang H. Comparison of Genome-Wide DNA Methylation Profiles of Human Fetal Tissues Conceived by in vitro Fertilization and Natural Conception. Front Cell Dev Biol 2021; 9:694769. [PMID: 34336842 PMCID: PMC8318003 DOI: 10.3389/fcell.2021.694769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Assisted reproductive technology (ART) might induce adverse pregnancy outcomes and increase the risk of metabolic diseases in offspring' later life with unknown reasons. Here we evaluated the global methylation level and methylation profile of fetal tissue from elective terminations of pregnancy (ETP) after natural conception and multifetal pregnancy reduction (MFPR) after in vitro fertilization and embryo transfer (IVF-ET). Results Global methylation levels were comparable between the fetal tissue of ETP after natural conception group and MFPR after IVF-ET group. The methylation levels were lower in the hypermethylated regions of the MFPR group than in the ETP group, while the methylation levels were higher in the hypomethylated regions of the MFPR group. Heatmap visualization and hierarchical clustering of the candidate differentially methylated regions (DMRs) showed differences between the DMRs in the ETP and MFPR samples. We identified 196 differentially methylated regions that matched 164 genes between the ETP and MFPR groups. In the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, skeletal system morphogenesis and diabetes mellitus ranked first. Ingenuity Pathway Analysis (IPA) revealed 8 diseases and functional annotations associated with IVT-ET. In the MFPR group, the final validation showed lower methylation levels in gene bodies of bone morphogenetic protein 4 (BMP4), higher methylation levels in the 1st exon and 5'UTR of thyroid peroxidase (TPO), and higher methylation levels in TSS1500 and TSS200 of interleukin 1 beta (IL1B). Conclusions ART does not alter global DNA methylation level, but influences DNA methylation variation in specific regions of human fetus in the early stage of life. Further studies are warranted to clarify the potential role of DNA methylation alterations in the gene expression profile.
Collapse
Affiliation(s)
- Ye Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinzhu Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Songchang Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yajing Tan
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiaocui Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Tang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyu Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yanting Wu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Department of Pathology and Pathphysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiexue Pan
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Jin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|