1
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Genome alteration of Leishmania orientalis under Amphotericin B inhibiting conditions. PLoS Negl Trop Dis 2024; 18:e0012716. [PMID: 39689148 DOI: 10.1371/journal.pntd.0012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Amphotericin B (AmB) is a potent antifungal and antiparasitic medication that exerts its action by disrupting the cell membrane of the leishmanial parasite, leading to its death. Understanding the genetic alterations induced by Amphotericin B is crucial for gaining insights into drug resistance mechanisms and developing more effective treatments against Leishmania infections. As a new Leishmania species, the molecular response of Leishmania orientalis to anti-leishmanial drugs has not been fully explored. In this study, Leishmania orientalis strain PCM2 culture was subjected to AmB exposure at a concentration of 0.03 uM over 72 hours compared to the control. The genomic alteration and transcriptomic changes were investigated by utilising the whole genome and RNA sequencing methods, followed by the analysis of single nucleotide polymorphisms (SNPs), differential gene expression, and chromosomal copy number variations (CNVs) assessed using read depth coverage (RDC) values across the entire genome. The chromosomal CNV analysis showed no significant difference between L. orientalis from the control and AmB-treated groups. The distribution of SNPs displayed notable variability, with higher SNP incidence in the control group compared to the AmB-treated group. Gene ontology analysis unveiled functions of the SNPs -associated genes involved in transporter function, genetic precursor synthesis, and purine nucleotide metabolism. Notably, the impact of AmB treatment on the L. orientalis gene expression profiles exhibited diverse expressional alterations, particularly the downregulation of pivotal genes such as the tubulin alpha chain gene. The intricate interplay between SNPs and gene expression alterations might underscore the complex regulatory networks underlying the AmB resistance of L. orientalis strain PCM2.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
2
|
Tran TC, Mähl K, Kappel C, Dakhiya Y, Sampathkumar A, Sicard A, Lenhard M. Altered interactions between cis-regulatory elements partially resolve BLADE-ON-PETIOLE genetic redundancy in Capsella rubella. THE PLANT CELL 2024; 36:4637-4657. [PMID: 39158598 PMCID: PMC11448885 DOI: 10.1093/plcell/koae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Duplicated genes are thought to follow one of three evolutionary trajectories that resolve their redundancy: neofunctionalization, subfunctionalization, or pseudogenization. Differences in expression patterns have been documented for many duplicated gene pairs and interpreted as evidence of subfunctionalization and a loss of redundancy. However, little is known about the functional impact of such differences and about their molecular basis. Here, we investigate the genetic and molecular basis for the partial loss of redundancy between the two BLADE-ON-PETIOLE genes BOP1 and BOP2 in red shepherd's purse (Capsella rubella) compared to Arabidopsis (Arabidopsis thaliana). While both genes remain almost fully redundant in A. thaliana, BOP1 in C. rubella can no longer ensure wild-type floral organ numbers and suppress bract formation, due to an altered expression pattern in the region of the cryptic bract primordium. We use two complementary approaches, transgenic rescue of A. thaliana atbop1 atbop2 double mutants and deletions in the endogenous AtBOP1 promoter, to demonstrate that several BOP1 promoter regions containing conserved noncoding sequences interact in a nonadditive manner to control BOP1 expression in the bract primordium and that changes in these interactions underlie the evolutionary divergence between C. rubella and A. thaliana BOP1 expression and activity. Similarly, altered interactions between cis-regulatory regions underlie the divergence in functional promoter architecture related to the control of floral organ abscission by BOP1. These findings highlight the complexity of promoter architecture in plants and suggest that changes in the interactions between cis-regulatory elements are key drivers for evolutionary divergence in gene expression and the loss of redundancy.
Collapse
Affiliation(s)
- Thi Chi Tran
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Karoline Mähl
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Yuri Dakhiya
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm D-14476, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| |
Collapse
|
3
|
Petak C, Frati L, Brennan RS, Pespeni MH. Whole-Genome Sequencing Reveals That Regulatory and Low Pleiotropy Variants Underlie Local Adaptation to Environmental Variability in Purple Sea Urchins. Am Nat 2023; 202:571-586. [PMID: 37792925 DOI: 10.1086/726013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractOrganisms experience environments that vary across both space and time. Such environmental heterogeneity shapes standing genetic variation and may influence species' capacity to adapt to rapid environmental change. However, we know little about the kind of genetic variation that is involved in local adaptation to environmental variability. To address this gap, we sequenced the whole genomes of 140 purple sea urchins (Strongylocentrotus purpuratus) from seven populations that vary in their degree of pH variability. Despite no evidence of global population structure, we found a suite of single-nucleotide polymorphisms (SNPs) tightly correlated with local pH variability (outlier SNPs), which were overrepresented in regions putatively involved in gene regulation (long noncoding RNA and enhancers), supporting the idea that variation in regulatory regions is important for local adaptation to variability. In addition, outliers in genes were found to be (i) enriched for biomineralization and ion homeostasis functions related to low pH response, (ii) less central to the protein-protein interaction network, and (iii) underrepresented among genes highly expressed during early development. Taken together, these results suggest that loci that underlie local adaptation to pH variability in purple sea urchins fall in regions with potentially low pleiotropic effects (based on analyses involving regulatory regions, network centrality, and expression time) involved in low pH response (based on functional enrichment).
Collapse
|
4
|
Pergola G, Penzel N, Sportelli L, Bertolino A. Lessons Learned From Parsing Genetic Risk for Schizophrenia Into Biological Pathways. Biol Psychiatry 2022:S0006-3223(22)01701-2. [PMID: 36740470 DOI: 10.1016/j.biopsych.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
The clinically heterogeneous presentation of schizophrenia is compounded by the heterogeneity of risk factors and neurobiological correlates of the disorder. Genome-wide association studies in schizophrenia have uncovered a remarkably high number of genetic variants, but the biological pathways they impact upon remain largely unidentified. Among the diverse methodological approaches employed to provide a more granular understanding of genetic risk for schizophrenia, the use of biological labels, such as gene ontologies, regulome approaches, and gene coexpression have all provided novel perspectives into how genetic risk translates into the neurobiology of schizophrenia. Here, we review the salient aspects of parsing polygenic risk for schizophrenia into biological pathways. We argue that parsed scores, compared to standard polygenic risk scores, may afford a more biologically plausible and accurate physiological modeling of the different dimensions involved in translating genetic risk into brain mechanisms, including multiple brain regions, cell types, and maturation stages. We discuss caveats, opportunities, and pitfalls inherent in the parsed risk approach.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
| | - Nora Penzel
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|