1
|
Xie Y, Luo J, Zhong J, Lan D. Clinical Diagnosis and Genetic Analysis of Children With Muscular Dystrophies. Clin Pediatr (Phila) 2024:99228241272029. [PMID: 39198981 DOI: 10.1177/00099228241272029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
More than 90% suspected muscular dystrophy (MD) can be confirmed with multiplex ligation-dependent probe amplification (MLPA) combined with targeted panel, although there are a few that cannot be identified. A total of 312 suspected MD patients were enrolled into the study. The MLPA combined with a targeted myopathy panel were performed. Patients with negative results were subjected to whole exome sequencing (WES), whole genome sequencing (WGS), and/or RNA sequencing (RNA-seq). A total of 275 cases were diagnosed as Duchenne/Becker muscular dystrophy (DMD/BMD) and 20 cases were other types of myopathy or nonmuscular diseases. Six female DMD/BMD patients suffered from varying degrees of typical DMD-like symptoms and 2 others were suspected to be gonadal mosaicism. The systematic application of WES, WGS, and/or RNA-seq highlighted the need for the detection of variants missed by the current standard diagnostic procedures. The identification of female patients and mosaic carriers was crucial to predict the risk of recurrence and allow for optimal genetic counseling.
Collapse
Affiliation(s)
- Yanshu Xie
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhong H, Sian V, Johari M, Katayama S, Oghabian A, Jonson PH, Hackman P, Savarese M, Udd B. Revealing myopathy spectrum: integrating transcriptional and clinical features of human skeletal muscles with varying health conditions. Commun Biol 2024; 7:438. [PMID: 38600180 PMCID: PMC11006663 DOI: 10.1038/s42003-024-06143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, Naples, Italy
| | - Mridul Johari
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Shintaro Katayama
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ali Oghabian
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Sun C, Xie Z, Cong L, Xu Y, Liu Z. An in-frame pseudoexon activation caused by a novel deep-intronic variant in the dysferlin gene. Ann Clin Transl Neurol 2023; 10:292-296. [PMID: 36542547 PMCID: PMC9930419 DOI: 10.1002/acn3.51716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The precise detection and interpretation of pathogenic DYSF variants are sometimes challenging, largely due to rare deep-intronic splice-altering variants. Here, we report on the genetic diagnosis of a male patient with dysferlinopathy. He remained genetically unsolved after routine exonic detection approaches that only detected a novel heterozygous frameshift variant (c.407dup, p.Thr137Tyrfs*11) in DYSF exon 5. Via muscle-derived DYSF mRNA studies, we identified a novel deep-intronic DYSF variant in the other allele (c.1397 + 649C > T), which causing in-frame alterations in DYSF mRNA and protein structure and confirmed his genetic diagnosis of dysferlinopathy. Our study emphasizes the potential role of undetected deep-intronic splice-altering variants in monogenic diseases.
Collapse
Affiliation(s)
- Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Lu Cong
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Yan Xu
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Zunjing Liu
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
4
|
Zheng F, Lin Z, Hu Y, Shi X, Zhao Q, Lin Z. Identification of a Novel Non-Canonical Splice-Site Variant in ABCD1. J Clin Med 2023; 12:jcm12020473. [PMID: 36675402 PMCID: PMC9863105 DOI: 10.3390/jcm12020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Cerebral adrenoleukodystrophy (CALD) is a fatal genetic disease characterized by rapid, devastating neurological decline, with a narrow curative treatment window in the early stage. Non-canonical splice-site (NCSS) variants can easily be missed during genomic DNA analyses, and only a few of them in ABCD1 have been explored. Here, we studied a Chinese patient with clinical features similar to those of early-stage CALD but with a negative molecular diagnosis and a sibling who had presumably died of CALD. Trio-based whole-exome sequencing (trio-WES) and RNA sequencing (RNA-Seq) revealed a novel hemizygote NCSS variant c.901-25_901-9 del in ABCD1 intron 1, resulting in a complex splicing pattern. The in vitro minigene assay revealed that the c.901-25_901-9 del construct contained two aberrant transcripts that caused skipping of exon 2 and a small 48-bp deletion on left of the same exon. We identified a novel NCSS variant, that extends the spectrum of the known ABCD1 variants, and demonstrated the pathogenicity of this gene variant. Our findings highlight the importance of combining RNA-Seq and WES techniques for prompt diagnosis of leukodystrophy with NCSS variants.
Collapse
Affiliation(s)
- Feixia Zheng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhongdong Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xulai Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: ; Tel.: +86-13-80-668-9800
| |
Collapse
|
5
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|