1
|
Ran Y, Guo Z, Zhang L, Li H, Zhang X, Guan X, Cui X, Chen H, Cheng M. Mitochondria‑derived peptides: Promising microproteins in cardiovascular diseases (Review). Mol Med Rep 2025; 31:127. [PMID: 40084698 PMCID: PMC11924172 DOI: 10.3892/mmr.2025.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondria‑derived peptides (MDPs) are a unique class of peptides encoded by short open reading frames in mitochondrial DNA, including the mitochondrial open reading frame of the 12S ribosomal RNA type‑c (MOTS‑c). Recent studies suggest that MDPs offer therapeutic benefits in various diseases, including neurodegenerative disorders and types of cancer, due to their ability to increase cellular resilience. Mitochondrial dysfunction is a key factor in the onset and progression of cardiovascular diseases (CVDs), such as atherosclerosis and heart failure, as it disrupts energy metabolism, increases oxidative stress and promotes inflammation. MDPs such as humanin and MOTS‑c have emerged as important regulators of mitochondrial health, as they show protective effects against these processes. Recent studies have shown that MDPs can restore mitochondrial function, reduce oxidative damage and alleviate inflammation, thus counteracting the pathological mechanisms that drive CVDs. Therefore, MDPs hold promise as therapeutic agents that are capable of slowing, stopping, or even reversing CVD progression and their use presents a promising strategy for future treatments. However, the clinical application of MDPs remains challenging due to their low bioavailability, poor stability and high synthesis costs. Thus, it is necessary to improve drug delivery systems to enhance the bioavailability of MDPs. Moreover, integrating basic research with clinical trials is essential to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Yutong Ran
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiliang Guo
- Department of Spinal Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China
| | - Lijuan Zhang
- Stroke Centre, Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hong Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiumei Guan
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Hao Chen
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
2
|
İbiş O, Selçuk AY, Teber S, Baran M, Koepfli K, Kefelioğlu H, Tez C. Mitogenomic Analysis of Glirids (Gliridae) and Squirrels (Sciuridae) From Türkiye: Evolutionary and Taxonomic Implications Within the Suborder Sciuromorpha. Ecol Evol 2025; 15:e70956. [PMID: 39949887 PMCID: PMC11821457 DOI: 10.1002/ece3.70956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Gliridae and Sciuridae, the most impressive mammalian radiations within the suborder Sciuromorpha, encompass a total of 327 extant species. This study aimed to: (i) characterize the mitogenomes of three sciurid (Spermophilus citellus, Spermophilus taurensis, and Spermophilus xanthoprymnus) and three glirid (Glis glis, Dryomys nitedula, and Dryomys laniger) species from Türkiye; (ii) elucidate the phylogeographic relationships within D. laniger and D. nitedula using both mitogenomes and mitochondrial cytochrome b (CYTB) sequences; and (iii) reconstruct the phylogenetic relationships among extant members of the suborder Sciuromorpha. Sixteen new mitogenomes were sequenced from Turkish samples, containing 37 genes (2 ribosomal RNAs, 13 protein-coding genes, 22 transfer RNAs), exhibiting similarity to those of other Gliridae and Sciuridae species. Based on mitogenomic data, Bayesian Inference and Maximum Likelihood phylogenetic analyses revealed two major phylogroups corresponding to the two families, Gliridae and Sciuridae, which were both monophyletic. Analyses of mitogenomic and CYTB sequences revealed at least two major lineages (i: Anatolia and ii: Lesser Caucasus and Alborz) of D. nitedula in the Anatolian region of Türkiye. The mitochondrial CYTB data indicated that D. laniger exhibited at least two major lineages (Eastern and Western), whereas D. nitedula comprised multiple lineages and sublineages. The mean genetic distance between the two mitogenomic lineages of D. nitedula was 7.69%. Based on the CYTB data, the mean genetic distance between the Eastern and Western lineages of D. laniger was 7%, whereas the mean genetic distances among the lineages of D. nitedula ranged from 6% to 13%. Major lineages of both D. laniger and D. nitedula might be considered distinct species throughout the species' range. This study demonstrates that complete mitogenomes for reconstructing the Gliridae phylogeny provides important information for revealing phylogenetic and phylogeographic relationships.
Collapse
Affiliation(s)
- Osman İbiş
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
- Vectors and Vector‐Born Diseases Research and Implementation CenterErciyes UniversityKayseriTürkiye
| | - Ahmet Yesari Selçuk
- Department of Forestry, Artvin Vocational SchoolArtvin Çoruh UniversityArtvinTürkiye
| | - Saffet Teber
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
| | - Mehmet Baran
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
| | - Klaus‐Peter Koepfli
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Haluk Kefelioğlu
- Department of Biology, Faculty of Science and LettersOndokuz Mayıs UniversitySamsunTürkiye
| | - Coşkun Tez
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
- Department of Biology, Faculty of SciencesErciyes UniversityKayseriTürkiye
| |
Collapse
|
3
|
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y, Xiong Y. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res 2024; 64:99-115. [PMID: 38008175 PMCID: PMC11464474 DOI: 10.1016/j.jare.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Ying Lei
- School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Silong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuqi Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Han Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Weijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Tiantian Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Velasquez-Restrepo S, Corrales Orozco M, Franco-Sierra ND, Martínez-Cerón JM, Díaz-Nieto JF. Identification of non-model mammal species using the MinION DNA sequencer from Oxford Nanopore. PeerJ 2024; 12:e17887. [PMID: 39346050 PMCID: PMC11438440 DOI: 10.7717/peerj.17887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background The Neotropics harbors the largest species richness of the planet; however, even in well-studied groups, there are potentially hundreds of species that lack a formal description, and likewise, many already described taxa are difficult to identify using morphology. Specifically in small mammals, complex morphological diagnoses have been facilitated by the use of molecular data, particularly from mitochondrial sequences, to obtain accurate species identifications. Obtaining mitochondrial markers implies the use of PCR and specific primers, which are largely absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new alternative for sequencing the entire mitochondrial genome without the need for specific primers. Only a limited number of studies have employed exclusively ONT long-reads to assemble mitochondrial genomes, and few studies have yet evaluated the usefulness of such reads in multiple non-model organisms. Methods We implemented fieldwork to collect small mammals, including rodents, bats, and marsupials, in five localities in the northern extreme of the Cordillera Central of Colombia. DNA samples were sequenced using the MinION device and Flongle flow cells. Shotgun-sequenced data was used to reconstruct the mitochondrial genome of all the samples. In parallel, using a customized computational pipeline, species-level identifications were obtained based on sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were corroborated using traditional morphological characters and phylogenetic analyses. Results A total of 24 individuals from 18 species were collected, morphologically identified, and deposited in the biological collection of Universidad EAFIT. Our different computational pipelines were able to reconstruct mitochondrial genomes from exclusively ONT reads. We obtained three new mitochondrial genomes and eight new molecular mitochondrial sequences for six species. Our species identification pipeline was able to obtain accurate species identifications for up to 75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses corroborated the identifications from our automated species identification pipeline and revealed important contributions to the knowledge of the diversity of Neotropical small mammals. Discussion This study was able to evaluate different pipelines to reconstruct mitochondrial genomes from non-model organisms, using exclusively ONT reads, benchmarking these protocols on a multi-species dataset. The proposed methodology can be applied by non-expert taxonomists and has the potential to be implemented in real-time, without the need to euthanize the organisms and under field conditions. Therefore, it stands as a relevant tool to help increase the available data for non-model organisms, and the rate at which researchers can characterize life specially in highly biodiverse places as the Neotropics.
Collapse
Affiliation(s)
| | | | - Nicolás D Franco-Sierra
- Syndesis Health, Palm Beach Gardens, Florida, United States
- Corporación de Investigación e Innovación (VEDAS CII), VEDAS, Medellín, Antioquia, Colombia
| | - Juan M Martínez-Cerón
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Juan F Díaz-Nieto
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
5
|
Zhao Y, Liang J, Li J, Zhang Z, Sun Y, Liu F, Zhang X, Liang Y, Teng L, Liu Z. First complete mitochondrial genome of the Alashan ground squirrel ( Spermophilus alashanicus) (Rodentia: Sciuridae) from Ningxia, China. Mitochondrial DNA B Resour 2024; 9:148-152. [PMID: 38274853 PMCID: PMC10810644 DOI: 10.1080/23802359.2024.2305406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
The Alashan ground squirrel (Spermophilus alashanicus) is primarily distributed in the regions of Inner Mongolia and Ningxia, China. In this study, we present the first complete mitochondrial genome of S. alashanicus. The genome spans 16,464 base pairs and comprises 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a single control region with a marked AT bias. The overall GC content is 35.4%. Phylogenetic analyses indicate that S. alashanicus clusters are closely associated with S. dauricus. This comprehensive characterization of the S. alashanicus mitochondrial genome serves as a foundational resource for future studies on mitochondrial evolution, species identification, population genomics, and phylogenetics.
Collapse
Affiliation(s)
- Yao Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jun Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan, China
| | - Jingyao Li
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan, China
| | - Zhirong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yue Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fubin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
6
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Kienzle L, Bettinazzi S, Choquette T, Brunet M, Khorami HH, Jacques JF, Moreau M, Roucou X, Landry CR, Angers A, Breton S. A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics. BMC Biol 2023; 21:111. [PMID: 37198654 DOI: 10.1186/s12915-023-01609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Collapse
Affiliation(s)
- Laura Kienzle
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marie Brunet
- Service de génétique médicale, Département de pédiatrie, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | | | - Jean-François Jacques
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathilde Moreau
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
8
|
Karin BR, Arellano S, Wang L, Walzer K, Pomerantz A, Vasquez JM, Chatla K, Sudmant PH, Bach BH, Smith LL, McGuire JA. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes. BMC Genomics 2023; 24:229. [PMID: 37131128 PMCID: PMC10155392 DOI: 10.1186/s12864-023-09277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Mitochondrial genome sequences have become critical to the study of biodiversity. Genome skimming and other short-read based methods are the most common approaches, but they are not well-suited to scale up to multiplexing hundreds of samples. Here, we report on a new approach to sequence hundreds to thousands of complete mitochondrial genomes in parallel using long-amplicon sequencing. We amplified the mitochondrial genome of 677 specimens in two partially overlapping amplicons and implemented an asymmetric PCR-based indexing approach to multiplex 1,159 long amplicons together on a single PacBio SMRT Sequel II cell. We also tested this method on Oxford Nanopore Technologies (ONT) MinION R9.4 to assess if this method could be applied to other long-read technologies. We implemented several optimizations that make this method significantly more efficient than alternative mitochondrial genome sequencing methods. RESULTS With the PacBio sequencing data we recovered at least one of the two fragments for 96% of samples (~ 80-90%) with mean coverage ~ 1,500x. The ONT data recovered less than 50% of input fragments likely due to low throughput and the design of the Barcoded Universal Primers which were optimized for PacBio sequencing. We compared a single mitochondrial gene alignment to half and full mitochondrial genomes and found, as expected, increased tree support with longer alignments, though whole mitochondrial genomes were not significantly better than half mitochondrial genomes. CONCLUSIONS This method can effectively capture thousands of long amplicons in a single run and be used to build more robust phylogenies quickly and effectively. We provide several recommendations for future users depending on the evolutionary scale of their system. A natural extension of this method is to collect multi-locus datasets consisting of mitochondrial genomes and several long nuclear loci at once.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA.
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.
| | - Selene Arellano
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Laura Wang
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kayla Walzer
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Aaron Pomerantz
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Juan Manuel Vasquez
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Peter H Sudmant
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Lydia L Smith
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jimmy A McGuire
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Tassé M, Choquette T, Angers A, Stewart DT, Pante E, Breton S. The longest mitochondrial protein in metazoans is encoded by the male-transmitted mitogenome of the bivalve Scrobicularia plana. Biol Lett 2022; 18:20220122. [PMID: 35673874 PMCID: PMC9174706 DOI: 10.1098/rsbl.2022.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytochrome c oxidase subunit II (COX2) is one of the three mitochondrially encoded proteins of the complex IV of the respiratory chain that catalyses the reduction of oxygen to water. The cox2 gene spans about 690 base pairs in most animal species and produces a protein composed of approximately 230 amino acids. We discovered an extreme departure from this pattern in the male-transmitted mitogenome of the bivalve Scrobicularia plana with doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA), which possesses an important in-frame insertion of approximately 4.8 kb in its cox2 gene. This feature—an enlarged male cox2 gene—is found in many species with DUI; the COX2 protein can be up to 420 amino acids long. Through RT-PCRs, immunoassays and comparative genetics, the evolution and functionality of this insertion in S. plana were characterized. The in-frame insertion is conserved among individuals from different populations and bears the signature of purifying selection seemingly indicating maintenance of functionality. Its transcription and translation were confirmed: this gene produces a polypeptide of 1892 amino acids, making it the largest metazoan COX2 protein known to date. We hypothesize that these extreme modifications in the COX2 protein affect the metabolism of mitochondria containing the male-transmitted mtDNA in Scrobicularia plana.
Collapse
Affiliation(s)
- Mélanie Tassé
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | | | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|