1
|
Dardas Z, Marafi D, Duan R, Fatih JM, El-Rashidy OF, Grochowski CM, Carvalho CMB, Jhangiani SN, Bi W, Du H, Gibbs RA, Posey JE, Calame DG, Zaki MS, Lupski JR. Genomic Balancing Act: deciphering DNA rearrangements in the complex chromosomal aberration involving 5p15.2, 2q31.1, and 18q21.32. Eur J Hum Genet 2025; 33:231-238. [PMID: 39256534 PMCID: PMC11840051 DOI: 10.1038/s41431-024-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Despite extensive research into the genetic underpinnings of neurodevelopmental disorders (NDD), many clinical cases remain unresolved. We studied a female proband with a NDD, mildly dysmorphic facial features, and brain stem hypoplasia on neuroimaging. Comprehensive genomic analyses revealed a terminal 5p loss and a terminal 18q gain in the proband while a diploid copy number for chromosomes 5 and 18 in both parents. Genomic investigations in the proband identified an unbalanced translocation t(5;18) with additional genetic material from chromosome 2 (2q31.3) inserted at the breakpoint, pointing to a complex chromosomal rearrangement (CCR) involving 5p15.2, 2q31.3, and 18q21.32. Breakpoint junction analyses enabled by long-read genome sequencing unveiled the presence of four distinct junctions in the father, who is a carrier of a balanced CCR. The proband inherited from the father both the abnormal chromosome 5 resulting in segmental aneusomies of chr5 (loss) and chr18 (gain) and a der(2) homologue. Evidences suggest a chromoplexy mechanism for this CCR derivation, involving double-strand breaks (DSBs) repaired by non-homologous end joining (NHEJ) or alternative end joining (alt-EJ). The complexity of the CCR and the segregation of homologues elucidate the genetic model for this family. This study demonstrates the importance of combining multiple genomic technologies to uncover genetic causes of complex neurodevelopmental syndromes and to better understand genetic disease mechanisms.
Collapse
Affiliation(s)
- Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Omnia F El-Rashidy
- Department of Pediatrics, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Bozkurt-Yozgatli T, Lun MY, Bengtsson JD, Sezerman U, Chinn IK, Coban-Akdemir Z, Carvalho CMB. Investigation of a pathogenic inversion in UNC13D and comprehensive analysis of chromosomal inversions across diverse datasets. Eur J Hum Genet 2025:10.1038/s41431-025-01817-w. [PMID: 40021841 DOI: 10.1038/s41431-025-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Inversions are known contributors to the pathogenesis of genetic diseases. Identifying inversions poses significant challenges, making it one of the most demanding structural variants (SVs) to detect and interpret. Recent advancements in sequencing technologies and the development of publicly available SV datasets have substantially enhanced our capability to explore inversions. However, a cross-comparison in those datasets remains unexplored. In this study, we reported a proband with familial hemophagocytic lymphohistiocytosis type-3 carrying a splicing variant (c.1389+1G>A) in trans with an inversion present in 0.006345% of individuals in gnomAD (v4.0) that disrupts UNC13D. Based on this result, we investigate the features of potentially pathogenic inversions in gnomAD which revealed 98.9% of them are rare and disrupt 5% of protein-coding genes associated with a phenotype in OMIM. We then conducted a comparative analysis of additional public datasets, including DGV, 1KGP, and two recent studies from the Human Genome Structural Variation Consortium which revealed common and dataset-specific inversion characteristics suggesting methodology detection biases. Next, we investigated the genetic features of inversions disrupting the protein-coding genes. Notably, we found that the majority of protein-coding genes in OMIM disrupted by inversions are associated with autosomal recessive phenotypes supporting the hypothesis that inversions in trans with other variants are potential hidden causes of monogenic diseases. This effort aims to fill the gap in our understanding of the molecular characteristics of inversions with low frequency in the population and highlight the importance of identifying them in rare disease studies.
Collapse
Affiliation(s)
- Tugce Bozkurt-Yozgatli
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, WA, USA
| | | | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ivan K Chinn
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | |
Collapse
|
3
|
Bilgrav Saether K, Eisfeldt J, Bengtsson JD, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Ek M, Schuy J, Ameur A, Dai H, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Wincent J, Nordgren A, Carvalho CMB, Lindstrand A. Leveraging the T2T assembly to resolve rare and pathogenic inversions in reference genome gaps. Genome Res 2024; 34:1785-1797. [PMID: 39486878 DOI: 10.1101/gr.279346.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Chromosomal inversions (INVs) are particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage-sensitive genes in cis Short-read genome sequencing (srGS) can only resolve ∼70% of cytogenetically visible inversions referred to clinical diagnostic laboratories, likely due to breakpoints in repetitive regions. Here, we study 12 inversions by long-read genome sequencing (lrGS) (n = 9) or srGS (n = 3) and resolve nine of them. In four cases, the inversion breakpoint region was missing from at least one of the human reference genomes (GRCh37, GRCh38, T2T-CHM13) and a reference agnostic analysis was needed. One of these cases, an INV9 mappable only in de novo assembled lrGS data using T2T-CHM13 disrupts EHMT1 consistent with a Mendelian diagnosis (Kleefstra syndrome 1; MIM#610253). Next, by pairwise comparison between T2T-CHM13, GRCh37, and GRCh38, as well as the chimpanzee and bonobo, we show that hundreds of megabases of sequence are missing from at least one human reference, highlighting that primate genomes contribute to genomic diversity. Aligning population genomic data to these regions indicated that these regions are variable between individuals. Our analysis emphasizes that T2T-CHM13 is necessary to maximize the value of lrGS for optimal inversion detection in clinical diagnostics. These results highlight the importance of leveraging diverse and comprehensive reference genomes to resolve unsolved molecular cases in rare diseases.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Medhat Mahmoud
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
- Cain Pediatric Neurology Research Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, Texas 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas 77024, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - James Paul Hwang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Huang X, Li H, Yang S, Ma M, Lian Y, Wu X, Qi X, Wang X, Rong W, Sheng X. De novo variation in ARID1B gene causes Coffin-Siris syndrome 1 in a Chinese family with excessive early-onset high myopia. BMC Med Genomics 2024; 17:142. [PMID: 38790056 PMCID: PMC11127418 DOI: 10.1186/s12920-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coffin-Siris syndrome (CSS) is a rare autosomal dominant inheritance disorder characterized by distinctive facial features, hypoplasia of the distal phalanx or nail of the fifth and additional digits, developmental or cognitive delay of varying degree, hypotonia, hirsutism/hypertrichosis, sparse scalp hair and varying kind of congenital anomalies. CSS can easily be misdiagnosed as other syndromes or disorders with a similar clinical picture because of their genetic and phenotypic heterogeneity. We describde the genotype-phenotype correlation of one patient from a healthy Chinese family with a novel genotype underlying CSS, who was first diagnosed in the ophthalmology department as early-onset high myopia (eoHM). Comprehensive ophthalmic tests as well as other systemic examinations were performed on participants to confirm the phenotype. The genotype was identified using whole exome sequencing, and further verified the results among other family members by Sanger sequencing. Real-time quantitative PCR (RT-qPCR) technology was used to detect the relative mRNA expression levels of candidate genes between proband and normal family members. The pathogenicity of the identified variant was determined by The American College of Medical Genetics and Genomics (ACMG) guidelines. STRING protein-protein interactions (PPIs) network analysis was used to detect the interaction of candidate gene-related proteins with high myopia gene-related proteins. The patient had excessive eoHM, cone-rod dystrophy, coarse face, excessive hair growth on the face, sparse scalp hair, developmental delay, intellectual disability, moderate hearing loss, dental hypoplasia, patent foramen ovale, chronic non-atrophic gastritis, bilateral renal cysts, cisterna magna, and emotional outbursts with aggression. The genetic assessment revealed that the patient carries a de novo heterozygous frameshift insertion variant in the ARID1B c.3981dup (p.Glu1328ArgfsTer5), which are strongly associated with the typical clinical features of CSS patients. The test results of RT-qPCR showed that mRNA expression of the ARID1B gene in the proband was approximately 30% lower than that of the normal control in the family, suggesting that the variant had an impact on the gene function at the level of mRNA expression. The variant was pathogenic as assessed by ACMG guidelines. Analysis of protein interactions in the STRING online database revealed that the ARID1A protein interacts with the high myopia gene-related proteins FGFR3, ASXL1, ERBB3, and SOX4, whereas the ARID1A protein antagonizes the ARID1B protein. Therefore, in this paper, we are the first to report a de novo heterozygous frameshift insertion variant in the ARID1B gene causing CSS with excessive eoHM. Our study extends the genotypic and phenotypic spectrums for ARID1B-CSS and supplies evidence of significant association of eoHM with variant in ARID1B gene. As CSS has high genetic and phenotypic heterogeneity, our findings highlight the importance of molecular genetic testing and an interdisciplinary clinical diagnostic workup to avoid misdiagnosis as some disorders with similar manifestations of CSS.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Huiping Li
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | | | - Meijiao Ma
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Yuanyuan Lian
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xueli Wu
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xuhui Wang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Weining Rong
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China.
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Bilgrav Saether K, Eisfeldt J, Bengtsson J, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Schuy J, Ameur A, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Nordgren A, Carvalho CMB, Lindstrand A. Mind the gap: the relevance of the genome reference to resolve rare and pathogenic inversions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24305780. [PMID: 38712270 PMCID: PMC11071548 DOI: 10.1101/2024.04.22.24305780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.
Collapse
|
6
|
Rodrigues Alves Barbosa V, Maroilley T, Diao C, Colvin-James L, Perrier R, Tarailo-Graovac M. Single variant, yet "double trouble": TSC and KBG syndrome because of a large de novo inversion. Life Sci Alliance 2024; 7:e202302115. [PMID: 38253421 PMCID: PMC10803213 DOI: 10.26508/lsa.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the advances in high-throughput sequencing, many rare disease patients remain undiagnosed. In particular, the patients with well-defined clinical phenotypes and established clinical diagnosis, yet missing or partial genetic diagnosis, may hold a clue to more complex genetic mechanisms of a disease that could be missed by available clinical tests. Here, we report a patient with a clinical diagnosis of Tuberous sclerosis, combined with unusual secondary features, but negative clinical tests including TSC1 and TSC2 Short-read whole-genome sequencing combined with advanced bioinformatics analyses were successful in uncovering a de novo pericentric 87-Mb inversion with breakpoints in TSC2 and ANKRD11, which explains the TSC clinical diagnosis, and confirms a second underlying monogenic disorder, KBG syndrome. Our findings illustrate how complex variants, such as large inversions, may be missed by clinical tests and further highlight the importance of well-defined clinical diagnoses in uncovering complex molecular mechanisms of a disease, such as complex variants and "double trouble" effects.
Collapse
Affiliation(s)
- Victoria Rodrigues Alves Barbosa
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Tatiana Maroilley
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Leslie Colvin-James
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Renee Perrier
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Lupski J, Dardas Z, Marafi D, Duan R, Fatih J, El-Rashidy O, Grochowski C, Carvalho C, Jhangiani S, Bi W, Du H, Gibbs R, Posey J, Calame D, Zaki M. Genomic Balancing Act: Deciphering DNA rearrangements in the Complex Chromosomal Aberration involving 5p15.2, 2q31.1 and 18q21.32. RESEARCH SQUARE 2024:rs.3.rs-3949622. [PMID: 38464263 PMCID: PMC10925411 DOI: 10.21203/rs.3.rs-3949622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite extensive research into the genetic underpinnings of neurodevelopmental disorders (NDD), many clinical cases remain unresolved. We studied a female proband with a NDD, mildly dysmorphic facial features, and brain stem hypoplasia on neuroimaging. Comprehensive genomic analyses revealed a terminal 5p loss and terminal 18q gain in the proband while a diploid copy number for chromosomes 5 and 18 in both parents. Genomic investigations in the proband identified an unbalanced translocation t(5;18) with additional genetic material from chromosome 2 (2q31.3) inserted at the breakpoint, pointing to a complex chromosomal rearrangement (CCR) involving 5p15.2, 2q31.3, and 18q21.32. Breakpoint junction analyses enabled by long read genome sequencing unveiled the presence of four distinct junctions in the father, who is carrier of a balanced CCR. The proband inherited from the father both the abnormal chromosome 5 resulting in segmental aneusomies of chr5 (loss) and chr18 (gain) and a der(2) homologue. Evidences suggest a chromoplexy mechanism for this CCR derivation, involving double-strand breaks (DSBs) repaired by non-homologous end joining (NHEJ) or alternative end joining (alt-EJ). The complexity of the CCR and the segregation of homologues elucidate the genetic model for this family. This study demonstrates the importance of combining multiple genomic technologies to uncover genetic causes of complex neurodevelopmental syndrome and to better understand genetic disease mechanisms.
Collapse
|
8
|
Schuy J, Grochowski CM, Carvalho CMB, Lindstrand A. Complex genomic rearrangements: an underestimated cause of rare diseases. Trends Genet 2022; 38:1134-1146. [PMID: 35820967 PMCID: PMC9851044 DOI: 10.1016/j.tig.2022.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023]
Abstract
Complex genomic rearrangements (CGRs) are known contributors to disease but are often missed during routine genetic screening. Identifying CGRs requires (i) identifying copy number variants (CNVs) concurrently with inversions, (ii) phasing multiple breakpoint junctions incis, as well as (iii) detecting and resolving structural variants (SVs) within repeats. We demonstrate how combining cytogenetics and new sequencing methodologies is being successfully applied to gain insights into the genomic architecture of CGRs. In addition, we review CGR patterns and molecular features revealed by studying constitutional genomic disorders. These data offer invaluable lessons to individuals interested in investigating CGRs, evaluating their clinical relevance and frequency, as well as assessing their impact(s) on rare genetic diseases.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Pacific Northwest Research Institute, Seattle, WA, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Córdova-Fletes C, Rivera H, Aguayo-Orozco TA, Martínez-Jacobo LA, Garza-González E, Robles-Espinoza CD, Basurto-Lozada P, Avalos-Gómez HG, Esparza-García E, Domínguez-Quezada MG. A chromoanagenesis-driven ultra-complex t(5;7;21)dn truncates neurodevelopmental genes in a disabled boy as revealed by whole-genome sequencing. Eur J Med Genet 2022; 65:104579. [PMID: 35933106 DOI: 10.1016/j.ejmg.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/30/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Germline or constitutional chromoanagenesis-related complex chromosomal rearrangements (CCRs) are rare, apparently "all-at-once", catastrophic events that occur in a single cell cycle, exhibit an unexpected complexity, and sometimes correlate with a severe abnormal phenotype. The term chromoanagenesis encompasses three distinct phenomena, namely chromothripsis, chromoanasynthesis, and chromoplexy. Herein, we found hallmarks of chromothripsis and chromoplexy in an ultra-complex t(5; 7;21)dn involving several disordered breakpoint junctions (BPJs) accompanied by some microdeletions and the disruption of neurodevelopmental genes in a patient with a phenotype resembling autosomal dominant MRD44 (OMIM 617061). G-banded chromosomes and FISH showed that the CCR implied the translocation of the 5p15.2→pter segment onto 7q11.23; in turn, the fragment 7q11.23→qter of der(7) separated into two pieces: the segment q11.23→q32 translocated onto 5p15.2 and fused to 21q22.1→ter in the der(5) while the distal 7q32→qter segment translocated onto der(21) at q22.1. Subsequent whole-genome sequencing unveiled that CCT5, CMBL, RETREG1, MYO10, and TRIO from der(5), IMMP2L, TES, VPS37D, DUS4L, TYW1B, and FEZF1-AS1 from der(7), and TIAM1 and SOD1 from der(21), were disrupted by BPJs, whereas some other genes (predicted to be haplosufficient or inconsequential) were completely deleted. Although remarkably CCT5, TRIO, TES, MYO10, and TIAM1 (and even VPS37D) cooperate in key biological processes for normal neuronal development such as cell adhesion, migration, growth, and/or cytoskeleton formation, the disruption of TRIO most likely caused the patient's MRD44-like phenotype, including intellectual disability, microcephaly, finger anomalies, and facial dysmorphia. Our observation represents the first truncation of TRIO related to a chromoanagenesis event and therefore expands the mutational spectrum of this crucial gene. Moreover, our findings indicate that more than one mechanism is involved in modeling the architecture of ultra-complex rearrangements.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| | - Horacio Rivera
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Thania Alejandra Aguayo-Orozco
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico; División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Lizeth Alejandra Martínez-Jacobo
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico; Wellcome Sanger Institute, Hinxton, UK
| | - Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
| | | | - Eduardo Esparza-García
- Hospital de Pediatría, UMAE-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| |
Collapse
|
10
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|