1
|
Karthikeyan SK, Chandrashekar DS, Sahai S, Shrestha S, Aneja R, Singh R, Kleer CG, Kumar S, Qin ZS, Nakshatri H, Manne U, Creighton CJ, Varambally S. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. NPJ Breast Cancer 2025; 11:35. [PMID: 40251157 PMCID: PMC12008238 DOI: 10.1038/s41523-025-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
Breast cancer (BCa), a leading malignancy among women, is characterized by morphological and molecular heterogeneity. While early-stage, hormone receptor, and HER2-positive BCa are treatable, triple-negative BCa and metastatic BCa remains largely untreatable. Advances in sequencing and proteomic technologies have improved our understanding of the molecular alterations that occur during BCa initiation and progression and enabled identification of subclass-specific biomarkers and therapeutic targets. Despite the availability of abundant omics data in public repositories, user-friendly tools for multi-omics data analysis and integration are scarce. To address this, we developed a comprehensive BCa data analysis platform called MammOnc-DB ( http://resource.path.uab.edu/MammOnc-Home.html ), comprising data from more than 20,000 BCa samples. MammOnc-DB facilitates hypothesis generation and testing, biomarker discovery, and therapeutic targets identification. The platform also includes pre- and post-treatment data, which can help users identify treatment resistance markers and support combination therapy strategies, offering researchers and clinicians a comprehensive tool for BCa data analysis and visualization.
Collapse
Affiliation(s)
| | | | - Snigdha Sahai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Ritu Aneja
- School of Health Professions, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sidharth Kumar
- Department of Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad J Creighton
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Varambally S, Karthikeyan SK, Chandrashekar D, Sahai S, Shrestha S, Aneja R, Singh R, Kleer C, Kumar S, Qin Z, Nakshatri H, Manne U, Creighton C. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. RESEARCH SQUARE 2024:rs.3.rs-4926362. [PMID: 39399665 PMCID: PMC11469468 DOI: 10.21203/rs.3.rs-4926362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Breast cancer (BCa) is one of the most common malignancies among women worldwide. It is a complex disease that is characterized by morphological and molecular heterogeneity. In the early stages of the disease, most BCa cases are treatable, particularly hormone receptor-positive and HER2-positive tumors. Unfortunately, triple-negative BCa and metastases to distant organs are largely untreatable with current medical interventions. Recent advances in sequencing and proteomic technologies have improved our understanding of the molecular changes that occur during breast cancer initiation and progression. In this era of precision medicine, researchers and clinicians aim to identify subclass-specific BCa biomarkers and develop new targets and drugs to guide treatment. Although vast amounts of omics data including single cell sequencing data, can be accessed through public repositories, there is a lack of user-friendly platforms that integrate information from multiple studies. Thus, to meet the need for a simple yet effective and integrative BCa tool for multi-omics data analysis and visualization, we developed a comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB was developed to provide a unique resource for hypothesis generation and testing, as well as for the discovery of biomarkers and therapeutic targets. The platform also provides pre- and post-treatment data, which can help users identify treatment resistance markers and patient groups that may benefit from combination therapy.
Collapse
|
3
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N. Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Noor A. Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| |
Collapse
|
4
|
Sirbu O, Helmy M, Giuliani A, Selvarajoo K. Globally invariant behavior of oncogenes and random genes at population but not at single cell level. NPJ Syst Biol Appl 2023; 9:28. [PMID: 37355674 DOI: 10.1038/s41540-023-00290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Cancer is widely considered a genetic disease. Notably, recent works have highlighted that every human gene may possibly be associated with cancer. Thus, the distinction between genes that drive oncogenesis and those that are associated to the disease, but do not play a role, requires attention. Here we investigated single cells and bulk (cell-population) datasets of several cancer transcriptomes and proteomes in relation to their healthy counterparts. When analyzed by machine learning and statistical approaches in bulk datasets, both general and cancer-specific oncogenes, as defined by the Cancer Genes Census, show invariant behavior to randomly selected gene sets of the same size for all cancers. However, when protein-protein interaction analyses were performed, the oncogenes-derived networks show higher connectivity than those relative to random genes. Moreover, at single-cell scale, we observe variant behavior in a subset of oncogenes for each considered cancer type. Moving forward, we concur that the role of oncogenes needs to be further scrutinized by adopting protein causality and higher-resolution single-cell analyses.
Collapse
Affiliation(s)
- Olga Sirbu
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Republic of Singapore
| | - Mohamed Helmy
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Republic of Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Republic of Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, 117456, Republic of Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 639798, Republic of Singapore.
| |
Collapse
|
5
|
Ngule CM, Hemati H, Ren X, Obaleye O, Akinyemi AO, Oyelami FF, Xiong X, Song J, Liu X, Yang JM. Identification of a NACC1-Regulated Gene Signature Implicated in the Features of Triple-Negative Breast Cancer. Biomedicines 2023; 11:1223. [PMID: 37189841 PMCID: PMC10136325 DOI: 10.3390/biomedicines11041223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Chrispus M. Ngule
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Oluwafunminiyi Obaleye
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos O. Akinyemi
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Felix F. Oyelami
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Coimbra PPS, da Silva-e-Silva ACAG, Antonio ADS, Pereira HMG, da Veiga-Junior VF, Felzenszwalb I, Araujo-Lima CF, Teodoro AJ. Antioxidant Capacity, Antitumor Activity and Metabolomic Profile of a Beetroot Peel Flour. Metabolites 2023; 13:metabo13020277. [PMID: 36837895 PMCID: PMC9961284 DOI: 10.3390/metabo13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 02/17/2023] Open
Abstract
In this study, a beetroot peel flour was made, and its in vitro antioxidant activity was determined in aqueous (BPFw) and ethanolic (BPFe) extracts. The influence of BPFw on breast cancer cell viability was also determined. A targeted betalain profile was obtained using high-resolution Q-Extractive Plus Orbitrap mass spectrometry (Obrtitrap-HRMS) alongside untargeted chemical profiling of BPFw using Ultra-High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry (UHPLC-HRMS). BPFw and BPFe presented satisfactory antioxidant activities, with emphasis on the total phenolic compounds and ORAC results for BPFw (301.64 ± 0.20 mg GAE/100 g and 3032.78 ± 55.00 µmol T/100 g, respectively). The MCF-7 and MDA-MB-231 breast cancer cells presented reductions in viability when treated with BPFw, showing dose-dependent behavior, with MDA-MB-231 also showing time-dependent behavior. The chemical profiling of BPFw led to the identification of 9 betalains and 59 other compounds distributed amongst 28 chemical classes, with flavonoids and their derivates and coumarins being the most abundant. Three forms of betalain generated via thermal degradation were identified. However, regardless of thermal processing, the BPF still presented satisfactory antioxidant and anticancer activities, possibly due to synergism with other identified molecules with reported anticancer activities via different metabolic pathways.
Collapse
Affiliation(s)
- Pedro Paulo Saldanha Coimbra
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | | | - Ananda da Silva Antonio
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Carlos Fernando Araujo-Lima
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Correspondence: (C.F.A.-L.); (A.J.T.)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Department of Nutrition and Dietetics, Faculty of Nutrition, Fluminense Federal University, Rio de Janeiro 24020-141, Brazil
- Correspondence: (C.F.A.-L.); (A.J.T.)
| |
Collapse
|