1
|
Liu Y, Bian C, Ma KY, Yang Y, Wang Y, Liu C, Ouyang G, Xu M, Sun J, Shao C, Chen J, Shi Q, Mu X. Reference genome provide insights into sex determination of silver aworana (Osteoglossum bicirrhosum). BMC Biol 2025; 23:29. [PMID: 39875888 PMCID: PMC11776183 DOI: 10.1186/s12915-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts. RESULTS We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.e., around 26-kb upstream of foxl2 gene (encoding forkhead box L2). Its strong interaction with the neighboring foxl2 on the same chromosome suggests foxl2 as a candidate sex-related gene in silver arowana. We subsequently propose a complex gene network in the sex determination process of silver arowana, with foxl2 acting as the central contributor. Transcriptome sequencing of gonads support our hypothesis that the regulation of foxl2 can be influenced by the spatial proximity of the female-specific fragment, thereby promoting ovarian function or inhibiting testicular function to stimulate gonadal differentiation. Furthermore, we found the sex chromosomes to be homomorphic with a potentially recent origin, as a linkage disequilibrium analysis proved minor recombination suppression. CONCLUSIONS These results taken together serve as a crucial foundation for conducting extensive investigations on the evolution and differentiation of sex-determining mechanisms, as well as the emergence and development of sex chromosomes in various fishes.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ka Yan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guochang Ouyang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shanghai Ocean University, Shanghai, China
| | - Meng Xu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinhui Sun
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Liu H, Cui T, Liu H, Zhang J, Luo Q, Fei S, Chen K, Zhu X, Zhu C, Li B, Fang L, Zhao J, Ou M. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. Sci Data 2024; 11:1249. [PMID: 39562583 PMCID: PMC11577095 DOI: 10.1038/s41597-024-04075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
The mud carp (Cirrhinus molitorella) is an important economic farmed fish, mainly distributed in South China and Southeast Asia due to its strong adaptability and high yield. Despite its economic importance, the paucity of genomic information has constrained detailed genetic research and breeding efforts. In this study, we utilized PacBio HiFi long-read sequencing and Hi-C technologies to generate a meticulously assembled chromosome-level genome of the mud carp. This assembly spans 1,033.41 Mb, with an impressive 99.82% distributed across 25 chromosomes. The contig N50 and scaffold N50 are 33.29 Mb and 39.86 Mb, respectively. The completeness of the mud carp genome assembly is highlighted by a BUSCO score of 98.05%. We predict 25,865 protein-coding genes, with a BUSCO score of 96.54%, and functional annotations for 91.83% of these genes. Approximately 52.21% of the genome consists of repeat elements. This high-fidelity genome assembly is a vital resource for advancing molecular breeding, comparative genomics, and evolutionary studies of the mud carp and related species.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Tongxin Cui
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huijuan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chunkun Zhu
- School of Life science, Huaiyin Normal University, Huai'an, 223300, China
| | - Bingjie Li
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
3
|
Liu H, Zhang J, Cui T, Xia W, Luo Q, Fei S, Zhu X, Chen K, Zhao J, Ou M. Genome-Wide Association Studies (GWAS) and Transcriptome Analysis Reveal Male Heterogametic Sex-Determining Regions and Candidate Genes in Northern Snakeheads ( Channa argus). Int J Mol Sci 2024; 25:10889. [PMID: 39456674 PMCID: PMC11507226 DOI: 10.3390/ijms252010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The Northern snakehead (Channa argus) is a significant economic aquaculture species in China. Exhibiting sexual dimorphism in the growth rate between females and males, mono-sex breeding holds substantial value for aquaculture. This study employed GWAS and transcriptome analysis were applied to identify sex determination genomic regions and develop sex-specific markers. A total of 270 single-nucleotide polymorphisms (SNPs) and 31 insertion-deletions (InDels) were identified as being sexually dimorphic through GWAS and fixation index (Fst) scanning. Based on GWAS results, two sex-specific InDel markers were developed, effectively distinguishing genetic sex for XX females, XY males, and YY super-males via (polymerase chain reaction) PCR amplification. A major genomic segment of approximately 115 kb on chromosome 3 (Chr 03) was identified as the sex-determination region. A comparative transcriptome analysis of gonads for three sexes identified 158 overlapping differentially expressed genes (DEGs). Additionally, three sex-related candidate genes were identified near the sex determination region, including id2, sox11, and rnf144a. Further studies are required to elucidate the functions of these genes. Overall, two sex-specific InDel markers support a male heterogametic XX/XY sex-determination system in Northern snakeheads and three candidate genes offer new insights into sex determination and the evolution of sex chromosomes in teleost fish.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tongxin Cui
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Weiwei Xia
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| |
Collapse
|
4
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Chen J, Hu Z, Li P, Wang G, Wei H, Li Q, Fu B, Sun Y. Transcriptomic atlas for hypoxia and following re-oxygenation in Ancherythroculter nigrocauda heart and brain tissues: insights into gene expression, alternative splicing, and signaling pathways. Front Genet 2024; 15:1365285. [PMID: 38689653 PMCID: PMC11058841 DOI: 10.3389/fgene.2024.1365285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hypoxia is a mounting problem that affects the world's freshwaters, with severe consequence for many species, including death and large economical loss. The hypoxia problem has increased recently due to the combined effects of water eutrophication and global warming. In this study, we investigated the transcriptome atlas for the bony fish Ancherythroculter nigrocauda under hypoxia for 1.5, 3, and 4.5 h and its recovery to normal oxygen levels in heart and brain tissues. We sequenced 21 samples for brain and heart tissues (a total of 42 samples) plus three control samples and obtained an average of 32.40 million raw reads per sample, and 95.24% mapping rate of the filtered clean reads. This robust transcriptome dataset facilitated the discovery of 52,428 new transcripts and 6,609 novel genes. In the heart tissue, the KEGG enrichment analysis showed that genes linked to the Vascular smooth muscle contraction and MAPK and VEGF signaling pathways were notably altered under hypoxia. Re-oxygenation introduced changes in genes associated with abiotic stimulus response and stress regulation. In the heart tissue, weighted gene co-expression network analysis pinpointed a module enriched in insulin receptor pathways that was correlated with hypoxia. Conversely, in the brain tissue, the response to hypoxia was characterized by alterations in the PPAR signaling pathway, and re-oxygenation influenced the mTOR and FoxO signaling pathways. Alternative splicing analysis identified an average of 27,226 and 28,290 events in the heart and brain tissues, respectively, with differential events between control and hypoxia-stressed groups. This study offers a holistic view of transcriptomic adaptations in A. nigrocauda heart and brain tissues under oxygen stress and emphasizes the role of gene expression and alternative splicing in the response mechanisms.
Collapse
Affiliation(s)
- Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhen Hu
- Hubei Provincial Fisheries Technology Extension Center, Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd, Wuhan, China
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Ding J, Tang D, Zhang Y, Gao X, Du C, Shen W, Jin S, Zhu J. Transcriptomes of Testes at Different Developmental Stages in the Opsariichthys bidens Predict Key Genes for Testis Development and Spermatogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:123-139. [PMID: 36520355 DOI: 10.1007/s10126-022-10186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Testis development is a complex process involving multiple genes, and the molecular mechanisms underlying testis development in Opsariichthys bidens remain unclear. We performed transcriptome sequencing analysis on a total of 12 samples of testes from stages II, III, IV, and V of O. bidens and obtained a total of 79.52 Gb clean data, as well as 288,573 transcripts and 116,215 unigenes. Differential expression analysis showed that 22,857 differentially expressed genes (DEGs) were screened in six comparison groups (III vs. II, IV vs. II, V vs. II, IV vs. III, V vs. III, and V vs. IV). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs showed that six comparison groups were significantly enriched for a total of 20 significantly up- or down-regulated pathways, including six pathways related to signal transduction, three pathways related to energy metabolism, five pathways related to disease, and two pathways related to ribosomes. Furthermore, our investigation revealed that DEGs were enriched in several important functional pathways, such as Huntington's disease signaling pathway, TGF-β signaling pathway, and ribosome signaling pathway. Protein-protein interaction network analysis of DEGs identified 63 up-regulated hub genes, including 9 kinesin genes and 2 cytoplasmic dynein genes, and 39 down-regulated hub genes, including 13 ribosomal protein genes. This result contributes to the knowledge of spermatogenesis and testis development in O. bidens.
Collapse
Affiliation(s)
- Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
7
|
Chromosome-Level Assembly of Male Opsariichthys bidens Genome Provides Insights into the Regulation of the GnRH Signaling Pathway and Genome Evolution. BIOLOGY 2022; 11:biology11101500. [PMID: 36290404 PMCID: PMC9598921 DOI: 10.3390/biology11101500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The hook snout carp Opsariichthys bidens is an important farmed fish in East Asia that shows sexual dimorphism in growth, with males growing faster and larger than females. To understand these complex traits and improve molecular breeding, chromosome-level genome assembly of male O. bidens was performed using Illumina, Nanopore, and Hi-C sequencing. The 992.9 Mb genome sequences with a contig N50 of 5.2 Mb were anchored to 38 chromosomes corresponding to male karyotypes. Of 30,922 functionally annotated genes, 97.5% of BUSCO genes were completely detected. Genome evolution analysis showed that the expanded and contracted gene families in the male O. bidens genome were enriched in 76 KEGG pathways, and 78 expanded genes were involved in the GnRH signaling pathway that regulates the synthesis and secretion of luteinizing hormone and glycoprotein hormones, further acting on male growth by inducing growth hormone. Compared to the released female O. bidens genome, the number of annotated genes in males was much higher (23,992). The male chromosome LG06 exhibited over 97% identity with the female GH14/GH38. Male-specific genes were identified for LG06, where structural variation, including deletions and insertions, occurred at a lower rate, suggesting a centric fusion of acrocentric chromosomes GH14 and GH38. The genome-synteny analysis uncovered significant inter-chromosome conservation between male O. bidens and grass carp, the former originating from ancestral chromosome breakage to increase the chromosome number. Our results provide a valuable genetic resource for studying the regulation of sexual dimorphism, sex-determining mechanisms, and molecular-guided breeding of O. bidens.
Collapse
|
8
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|