1
|
Lim W. LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology. Biomedicines 2025; 13:607. [PMID: 40149584 PMCID: PMC11940432 DOI: 10.3390/biomedicines13030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research.
Collapse
Affiliation(s)
- Wonbong Lim
- Department of Orthopaedic Surgery, Chosun University, Gwangju 61453, Republic of Korea; ; Tel.: +82-62-230-6193; Fax: +82-62-226-3379
- Laboratory of Orthopaedic Research, Chosun University, Gwangju 61453, Republic of Korea
- Regional Leading Research Center, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Chang YH, Wu KC, Wang KH, Ding DC. Role of Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors 4-6 (LGR4-6) in the Ovary and Other Female Reproductive Organs: A Literature Review. Cell Transplant 2025; 34:9636897241303441. [PMID: 39874091 PMCID: PMC11776010 DOI: 10.1177/09636897241303441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer. LGR4 is essential for the proper development of the female reproductive system; its deficiency leads to significant reproductive abnormalities, including delayed menarche and follicle development issues. LGR5 is a well-established marker of stem cells in the ovary and fallopian tubes. It has been implicated in the pathogenesis of high-grade serous ovarian cancer. LGR6, while less studied, shares functional similarities with LGR5 and can maintain stemness. It contributes to chemoresistance in ovarian cancer. LGR6 is a marker for fallopian tube stem cells and is involved in stem cell maintenance and differentiation. LGR4-6 regulate the pathophysiology of female reproductive tissues. LGR4-6 are promising therapeutic targets for treating reproductive cancers and other related disorders. Molecular mechanisms underlying the functions of LGR4-6 should be studied.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, Tzu Chi University, Hualien
| |
Collapse
|
3
|
Gervas P, Molokov A, Babyshkina N, Zherebnova A, Choynzonov E, Cherdyntseva N. The frequency of known germline LGR4 missense variant in the ethnic groups of West Siberia. Mol Biol Rep 2024; 52:42. [PMID: 39644398 DOI: 10.1007/s11033-024-10133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Hereditary breast cancer is an autosomal dominant disease caused by variants in genes such as BRCA1/2, RAD51, ATM, BRIP1, and others. In a previous study using whole exome sequencing, we identified a germline variant of the LGR4 gene (rs34804482, NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly)) in a young Tuvan breast cancer patient (belonging to the Turkic-speaking tribes of Central Asia). The aim of this study was to determine the frequency of the variant of the LGR4 gene NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly) in ethnic groups of West Siberia using the PCR-RT method. METHODS The study involved 735 breast cancer patients from ethnic groups in Siberia, median age at diagnosis of 43 ± 15.6 years. The control group consisted of 727 healthy women from Siberia, median age of 43.05 ± 13.5 years. RESULTS The frequency of this variant (rs34804482) was 0.015 in Russian, 0.022 in Buryat, and 0.069 in Tuvan breast cancer patients. In Tuvan women with breast cancer, the frequency of the LGR4 gene variant was significantly higher than in Russian BC patients (0.069 versus 0.015, X2 = 8.153, p = 0.005). The frequency of the LGR4 gene variant (rs34804482) in healthy Tuvan women was significantly higher than in healthy Russian women (0.066 versus 0.016, X2 = 6.368, p = 0.012). The variant frequency in healthy Russians was close to that in Europeans (0.016 versus 0.0219). CONCLUSIONS We found no statistically significant differences in the rs34804482 frequency between breast cancer patients and healthy individuals in the ethnic groups studied. The highest frequency of this missense germline variant was observed among Tuvans.
Collapse
Affiliation(s)
- Polina Gervas
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia.
- National Tomsk State University, Tomsk, Russia.
| | - Aleksey Molokov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nataliya Babyshkina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | | | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| | - Nadezda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| |
Collapse
|
4
|
Mehta P, Sharma A, Goswami A, Gupta SK, Singhal V, Srivastava KR, Chattopadhyay N, Singh R. Case report: exome sequencing identified mutations in the LRP5 and LGR4 genes in a case of osteoporosis with recurrent fractures and extraskeletal manifestations. Front Endocrinol (Lausanne) 2024; 15:1475446. [PMID: 39525853 PMCID: PMC11549668 DOI: 10.3389/fendo.2024.1475446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background Genetic mutations have been reported in a number of bone disorders with or without extra-skeletal manifestations. The purpose of the present study was to investigate the genetic cause in a middle-aged woman with osteoporosis, recurrent fractures and extraskeletal manifestations. Methods A 56-year-old Indian woman presented to the clinic with complaints of difficulty in walking, recurrent fractures, limb bending, progressive skeletal deformities, and poor overall health. At the age of 37, she had experienced severe anemia with diarrhea, significant weight loss, knuckle pigmentation, and a significant loss of scalp hair. She had received multiple blood transfusions and parenteral iron supplementation with normalization of hemoglobin. Subsequently, she had premature menopause at the age of 37. She died at the age of 61 due to liver failure. Exome sequencing followed by Sanger sequencing were undertaken to identify the potential pathogenic mutations. Results Genetic investigation identified likely pathogenic mutations in the LRP5 and LGR4 genes. Out of the two mutations, the heterozygous mutation (c.1199C>T) in the LRP5 gene resulted in a non-synonymous substitution of alanine with valine at the 400th position, and the second mutation (c.1403A>C) in the LGR4 gene led to a non-synonymous substitution of tyrosine with serine at the 468th residue of the protein. The minor allele frequencies of the c.1199C>T (LRP5) substitution in the 1000 genomes and IndiGenomes databases are 0.0003 and 0.001, while the c.1403A>C (LGR4) substitution has not been reported in these databases. Various in silico prediction tools suggested LGR4 mutation to be pathogenic and LRP5 mutation to be likely pathogenic. Conclusion Heterozygous mutations in the LRP5 and LGR4 genes had additive deteriorative effects on BMD, resulting in recurrent fractures and bone deformities, and extended the effect to extraskeletal sites, contributing to the poor overall health in this patient.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Aakriti Sharma
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Anupam Goswami
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Sushil Kumar Gupta
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vaibhav Singhal
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kinshuk Raj Srivastava
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Rajender Singh
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
5
|
Bi Y, Zhang L, Song Y, Sun L, Mulholland MW, Yin Y, Zhang W. Rspo2-LGR4 exacerbates hepatocellular carcinoma progression via activation of Wnt/β-catenin signaling pathway. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:352-365. [PMID: 37437654 PMCID: PMC10863972 DOI: 10.1016/j.gastrohep.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) plays an important role in stem cell differentiation, organ development and cancer. Whether LGR4 affects the progression of hepatocellular carcinoma (HCC) remains unknown. This study aimed to reveal the role of LGR4 in HCC. METHODS Clinical samples of HCC were collected to assess the expression of LGR4 and its correlation with patients' clinical characteristics. The expression level of LGR4 in HCC cells was altered by pharmacological and genetic methods, and the role of LGR4 in HCC progression was analyzed by in vivo and in vitro assays. HCC was induced by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) in wild-type and LGR4 deficient mice, the effect of LGR4 on HCC was examined by histopathological evaluation and biochemical assays. RESULTS LGR4 expression was up-regulated in HCC samples, and its expression level was positively correlated with tumor size, microvascular invasion (MVI), TNM stage and pathological differentiation grade of HCC patients. In the mouse HCC model induced by DEN+CCl4, knockdown of LGR4 effectively inhibited the progression of HCC. Silencing of LGR4 inhibited the proliferation, migration, invasion, stem cell-like properties and Warburg effect of HCC cells. These phenotypes were promoted by R-spondin2 (Rspo2), an endogenous ligand for LGR4. Rspo2 markedly increased the nuclear translocation of β-catenin, whereas IWR-1, an inhibitor of Wnt/β-catenin signaling, reversed its effect. Deficiency of LGR4 significantly reduced the nuclear translocation of β-catenin and the expression of its downstream target genes cyclinD1 and c-Myc. CONCLUSIONS LGR4 promotes HCC progression via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanghui Bi
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yan Song
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijun Sun
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China.
| | - Weizhen Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
González-Casaus ML. El diálogo oculto entre el hueso y los tejidos a través del remodelado óseo. ADVANCES IN LABORATORY MEDICINE 2024; 5:35-45. [PMID: 38634083 PMCID: PMC11019877 DOI: 10.1515/almed-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
El hueso es mucho más que un reservorio de calcio y fósforo. Su disposición lacuno-canalicular ofrece una importante vía de intercambio con la circulación y actualmente, el esqueleto se considera un gran órgano endocrino, con acciones que van más allá del control del balance fosfocálcico mediado por el factor fibroblástico 23 (FGF23). Paralelamente al efecto modulador de las adipoquinas sobre el remodelado óseo, diversas proteínas óseas, como la osteocalcina y la esclerostina, ejercen cierta acción contra-reguladora sobre el metabolismo energético, posiblemente en un intento de asegurar los enormes requerimientos energéticos del remodelado. En esta interacción del hueso con otros tejidos, especialmente el adiposo, participa la señalización canónica Wnt/β-catenina y por ello la esclerostina, una proteína osteocítica que inhibe esta señalización, emerge como un potencial biomarcador. Es más, su participación en diversas patologías le posiciona como diana terapéutica, existiendo un anticuerpo anti-esclerostina, recientemente aprobado en nuestro país para el tratamiento de la osteoporosis. Esta revisión aborda el carácter endocrino del hueso, el papel de la osteocalcina y, especialmente, el papel regulador y modulador de la esclerostina sobre remodelado óseo y la homeóstasis energética a través de su interacción con la señalización canónica Wnt/β-catenina, así como su potencial utilidad como biomarcador.
Collapse
|
7
|
González-Casaus ML. The hidden cross talk between bone and tissues through bone turnover. ADVANCES IN LABORATORY MEDICINE 2024; 5:24-34. [PMID: 38634076 PMCID: PMC11019897 DOI: 10.1515/almed-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
Bone is more than a reservoir of calcium and phosphorus. Its lacuno-canalicular arrangement provides an important pathway for exchange with circulation and currently, the skeleton is considered a large endocrine organ with actions that go beyond the control of calcium-phosphorus balance mediated by fibroblastic growth factor 23 (FGF23). Parallel to the modulating effect of adipokines on bone turnover, certain bone proteins, such as osteocalcin and sclerostin, play a counter-regulatory role on energy metabolism, probably in an attempt to ensure its high energy requirement for bone turnover. In this crosstalk between bone and other tissues, especially with adipose tissue, canonical Wnt/β-catenin signaling is involved and therefore, sclerostin, an osteocyte derived protein that inhibits this signalling, emerges as a potential biomarker. Furthermore, its involvement in diverse pathologic conditions supports sclerostin as a therapeutic target, with an anti-sclerostin antibody recently approved in our country for the treatment of osteoporosis. This review addresses the endocrine nature of bone, the role of osteocalcin, and specially, the regulatory and modulatory role of sclerostin on bone turnover and energy homeostasis through its inhibitory effect on canonical Wnt/β-catenin signaling, as well as its potential utility as a biomarker.
Collapse
|
8
|
Yang L, Fan Q, Wang J, Yang X, Yuan J, Li Y, Sun X, Wang Y. TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma. Cell Death Discov 2023; 9:185. [PMID: 37344459 DOI: 10.1038/s41420-023-01484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Medroxyprogesterone (MPA) has therapeutic effect on endometrial carcinoma (EC), while it could promote the carcinogenesis of breast cancer (BC) by activating receptor activator of NF-kB ligand (RANKL). However, the selective mechanism of MPA in endometrium and breast tissue remains obscure. Multiomics analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) were performed in cell lines derived from endometrial cancer and mammary tumor to screen the differential co-regulatory factors of progesterone receptor (PR). Dual-luciferase assays and ChIP-PCR assays were used to validate the transcriptional regulation. Co-immunoprecipitation (Co-IP) and immunofluorescence assays were carried out to explore molecular interactions between PR, the cofactor transcriptional repressor GATA binding 1 (TRPS1), and histone deacetylase 2 (HDAC2). Subsequently, human endometrial cancer/breast cancer xenograft models were established to investigate the regulation effect of cofactor TRPS1 in vivo. In the current study, we found that MPA downregulated RANKL expression in a time- and dose-dependent manner in EC, while had the opposite effect on BC. Then PR could recruit cofactor TRPS1 to the promoter of RANKL, leading to histone deacetylation of RANKL to repress its transcription in EC, whereas MPA disassociated the PR/TRPS1/HDAC2 complex to enhance RANKL histone acetylation in BC. Therefore, TRPS1, the coregulator recruited by PR played a critical role in the selective mechanism of progesterone in EC and BC and could become a potential candidate for targeted therapy to improve the anticancer effect of MPA on EC and avoid its carcinogenic effect on BC.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiangjing Yuan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
9
|
Chen S, Xiao Z, Jiang W. SOX2 suppresses osteoblast differentiation of MC3T3-E1 cells through activating the transcription of LGR4. In Vitro Cell Dev Biol Anim 2023; 59:1-9. [PMID: 36547788 DOI: 10.1007/s11626-022-00740-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
Osteogenic differentiation is a crucial process of new bone formation. This study aimed to explore the roles and mechanism of SRY-Box Transcription Factor 2 (SOX2) on proliferation and osteogenic differentiation of MC3T3-E1 cells. Bone morphogenetic protein 2 (BMP2) was used to induce the osteogenic differentiation of MC3T3-E1 cells. The expression of SOX2 was determined by quantitative real-time PCR (RT-PCR) at different time points after induction. The SOX2 overexpression plasmids were constructed and transfected into MC3T3-E1 cells. Osteogenic differentiation was evaluated by Alizarin Red S staining and alkaline phosphatase (ALP) assay. The expressions of osteogenic differentiation markers including runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) were detected by western blot assay. Luciferase reporter and CHIP assays were used to confirm that SOX2 regulated the transcriptional activation of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). We found that SOX2 was down-regulated upon BMP2-induced osteogenic differentiation in MC3T3-E1 cells. Overexpression of SOX2 effectively inhibited osteogenic differentiation with decreased ALP activity, calcification, and osteogenic differentiation markers' expression including Runx2, OPN, and OCN. LGR4 was identified as a target of SOX2, and the inhibitory effect of SOX2 on osteogenic differentiation was reversed by knockdown of LGR4. The present study confirmed that SOX2 suppressed osteogenic differentiation of MC3T3-E1 cells through targeting LGR4, which possesses a therapeutic strategy for bone formation and generation.
Collapse
Affiliation(s)
- Sunyu Chen
- The Third Clinical Medical College, Fujian Medical University, No. 88, Jiaotong Road, Fuzhou, Fujian Province, 350004, People's Republic of China. .,Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China. .,Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, People's Republic of China.
| | - Zhanhao Xiao
- Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China
| | - Wenjin Jiang
- Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China
| |
Collapse
|