1
|
Wada N, Sakai S, Inoue Y, Nishizuka M. Silencing of fibronectin type III domain-containing protein 3A (FNDC3A) attenuates epithelial-to-mesenchymal transition (EMT), cancer invasion, and stemness in triple-negative breast cancer (TNBC). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119935. [PMID: 40120859 DOI: 10.1016/j.bbamcr.2025.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Currently, there are no effective therapeutic targets for triple-negative breast cancer (TNBC), including hormonal therapy, and it has a poor prognosis because of its rapid proliferation, high invasiveness, and metastatic potential. Therefore, it is expected that the elucidation of the characteristics of TNBC at the molecular level may lead to the development of new therapeutic drugs. In this study, Kaplan-Meier curve analysis showed that high expression levels of fibronectin type III domain-containing protein 3A (FNDC3A) were associated with poor overall survival in patients with TNBC. Furthermore, FNDC3A knockdown was found to suppress the epithelial-to-mesenchymal transition (EMT) and invasion potential as well as the stemness in several TNBC cell lines. In addition, RNA-seq analysis revealed that FNDC3A suppression inhibited the expression of Yes-associated protein 1 (YAP1) and its target genes, which have been reported to regulate cancer cell invasion and stemness. These results suggest that FNDC3A is a novel factor that plays an important role in the malignant progression of TNBC by maintaining cancer stemness and promoting cell invasion and that its function may involve the YAP1 pathway regulation. Therefore, FNDC3A is expected to become a potential therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Nanaka Wada
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasumichi Inoue
- Department of Cell signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Makoto Nishizuka
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan; Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
2
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Wang R, Ding L, Lin Y, Luo W, Xu Z, Li W, Lu Y, Zhu Z, Lu Z, Li F, Mao X, Xia L, Li G. The Quiet Giant: Identification, Effectors, Molecular Mechanism, Physiological and Pathological Function in mRNA 5-methylcytosine Modification. Int J Biol Sci 2024; 20:6241-6254. [PMID: 39664561 PMCID: PMC11628344 DOI: 10.7150/ijbs.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
5-Methylcytosine (m5C) is a prevalent nucleotide alteration observed in transfer RNA (tRNA) and ribosomal RNA (rRNA), and it is also widely distributed in the transcriptome, serving as one of the internal modifications of messenger RNA (mRNA) in higher eukaryotes. Increasing evidence has substantiated the presence of m5C in mRNA. As research on m5C progresses, there is an initial comprehension of its molecular mechanisms and biological significance in mRNA. This work aims to provide a comprehensive summary of the most recent advancements in the identification and screening, distribution, molecular functions, and biological effects of m5C in mRNA. We outline the current status of research and provide prospects for potential future applications.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weilin Li
- Department of Urology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
4
|
Qi Y, Li T, Zhou Y, Hao Y, Zhang J. RNA modification regulators as promising biomarkers in gynecological cancers. Cell Biol Toxicol 2024; 40:92. [PMID: 39472384 PMCID: PMC11522084 DOI: 10.1007/s10565-024-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024]
Abstract
This review explores the evolving landscape of gynecological oncology by focusing on emerging RNA modification signatures as promising biomarkers for assessing the risk and progression of ovarian, cervical, and uterine cancers. It provides a comprehensive overview of common RNA modifications, especially m6A, and their roles in cellular processes, emphasizing their implications in gynecological cancer development. The review meticulously examines specific m6A regulators including "writers", "readers", and "erasers" associated with three gynecological cancer types, discussing their involvement in initiation and progression. Methodologies for detecting RNA modifications are surveyed, highlighting advancements in high-throughput techniques with high sensitivity. A critical analysis of studies identifying m6A regulators as potential biomarkers is presented, addressing their diagnostic or prognostic significance. Mechanistic insights into RNA modification-mediated cancer progression are explored, shedding light on molecular pathways and potential therapeutic targets. Despite current challenges, the review discusses ongoing research efforts, future directions, and the transformative possibility of RNA modifications on early assessment and personalized therapy in gynecological oncology.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Yu L, Xu H, Xiong H, Yang C, Wu Y, Zhang Q. The role of m5C RNA modification in cancer development and therapy. Heliyon 2024; 10:e38660. [PMID: 39444404 PMCID: PMC11497397 DOI: 10.1016/j.heliyon.2024.e38660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
RNA modifications have been demonstrated to affect the function, stability, processing, and interactions of RNA, including pseudouridylation, acetylation and methylation. RNA methylation products, such as N6-methyladenosine (m6A), 5-methylcytidine (m5C), N7-methylguanosine (m7G), 2'-O-dimethyladenosine (m6Am), and N1-methyladenosine (m1A), have been reported to participate in tumorigenesis and tumor progression. The role of m6A in carcinogenesis has been well studied and summarized. In this review, we described the biological functions of m5C RNA modifications in tumorigenesis and tumor progression. Moreover, we highlighted the molecular mechanisms of m5C RNA modification in oncogenesis. Furthermore, we discussed whether targeting m5C regulator-associated genes could be a novel strategy for improving therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Department of Oncology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunju Yang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Modi AD, Zahid H, Southerland AC, Modi DM. Epitranscriptomics and cervical cancer: the emerging role of m 6A, m 5C and m 1A RNA modifications. Expert Rev Mol Med 2024; 26:e20. [PMID: 39377535 PMCID: PMC11488341 DOI: 10.1017/erm.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Cervical cancer (CC), one of the most prevalent and detrimental gynaecologic cancers, evolves through genetic and epigenetic alterations resulting in the promotion of oncogenic activity and dysfunction of tumour-suppressing mechanisms. Despite medical advancement, the prognosis for advanced-stage patients remains extremely low due to high recurrence rates and resistance to existing treatments. Thereby, the search for potential prognostic biomarkers is heightened to unravel new modalities of CC pathogenesis and to develop novel anti-cancer therapies. Epitranscriptomic modifications, reversible epigenetic RNA modifications, regulate various biological processes by deciding RNA fate to mediating RNA interactions. This narrative review provides insight into the cellular and molecular roles of endogenous RNA-editing proteins and their associated epitranscriptomic modifications, especially N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A), in governing the development, progression and metastasis of CC. We discussed the in-depth epitranscriptomic mechanisms underlying the regulation of over 50 RNAs responsible for tumorigenesis, proliferation, migration, invasion, survival, autophagy, stemness, epithelial-mesenchymal transition, metabolism (glucose, lipid, glutamate and glutamine), resistance (drug and radiation), angiogenesis and recurrence of CC. Additionally, we provided a concise overview of the therapeutic potential of targeting the altered expression of endogenous RNA-editing proteins and aberrant deposition of RNA modifications on both coding and non-coding RNAs in CC.
Collapse
Affiliation(s)
- Akshat D. Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Canada
| | - Hira Zahid
- Department of Biology, University of Toronto, Mississauga, Canada
| | | | | |
Collapse
|
7
|
Pan W, Liu X, Liu S. ALYREF m5C RNA methylation reader predicts bladder cancer prognosis by regulating the tumor immune microenvironment. Medicine (Baltimore) 2024; 103:e37590. [PMID: 38579085 PMCID: PMC10994465 DOI: 10.1097/md.0000000000037590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND 5-Methylcytidine (m5C) methylation is a recently emerging epigenetic modification that is closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the clinicopathological characteristics and prognostic value of m5C regulators in bladder cancer (BLCA), and their correlation with the tumor immune microenvironment. METHODS Thirteen m5C RNA methylation regulators were analyzed using RNA-sequencing and corresponding clinical information obtained from the TCGA database. The Cluster Profiler package was used to analyze the gene ontology function of potential targets and enriched the Kyoto Encyclopedia of Genes and Genomes pathway. Kaplan-Meier survival analysis was used to compare survival differences using the log-rank test and univariate Cox proportional hazards regression. The correlation between signature prognostic m5C regulators and various immune cells was analyzed. Univariate and multivariate Cox regression analyses identified independence of the ALYREF gene signature. RESULTS Nine out of the 13 m5C RNA methylation regulators were differentially expressed in BLCA and normal samples and were co-expressed. These 9 regulators were associated with clinicopathological tumor characteristics, particularly high or low tumor risk, pT or pTNM stage, and migration. Consensus clustering analysis divides the BLCA samples into 4 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment annotation and gene ontology function analysis identified 273 upregulated and 594 downregulated genes in BLCA. Notably, only ALYREF was significantly correlated with OS (P < .05). ALYREF exhibited significant infiltration levels in macrophage cells. Therefore, we constructed a nomogram for ALYREF as an independent prognostic factor. Additionally, we observed that both the mRNA and protein levels of ALYREF were upregulated, and immunofluorescence showed that ALYREF was mainly distributed in nuclear speckles. ALYREF overexpression was significantly associated with poor OS. CONCLUSION Our findings demonstrated the potential of ALYREF to predict clinical prognostic risks in BLCA patients and regulate the tumor immune microenvironment. As such, ALYREF may serve as a novel prognostic indicator in BLCA patients.
Collapse
Affiliation(s)
- Wengu Pan
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shuangde Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Liu Y, Liu S, Yan L, Zhang Q, Liu W, Huang X, Liu S. Contribution of m5C RNA Modification-Related Genes to Prognosis and Immunotherapy Prediction in Patients with Ovarian Cancer. Mediators Inflamm 2023; 2023:1400267. [PMID: 38022687 PMCID: PMC10661868 DOI: 10.1155/2023/1400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background 5-Methylcytosine (m5C) RNA modification is closely implicated in the occurrence of a variety of cancers. Here, we established a novel prognostic signature for ovarian cancer (OC) patients based on m5C RNA modification-related genes and explored the correlation between these genes with the tumor immune microenvironment. Methods Methylated-RNA immunoprecipitation sequencing helped us to identify candidate genes related to m5C RNA modification at first. Based on TCGA database, we screened the differentially expressed candidate genes related to the prognosis and constructed a prognostic model using LASSO Cox regression analyses. Notably, the accuracy of the model was evaluated by Kaplan-Meier analysis and receiver operator characteristic curves. Independent prognostic risk factors were investigated by Cox proportional hazard model. Furthermore, we also analyzed the biological functions and pathways involved in the signature. Finally, the immune response of the model was visualized in great detail. Results Totally, 2,493 candidate genes proved to be involved in m5C modification of RNA for OC. We developed a signature with prognostic value consisting of six m5C RNA modification-related genes. Specially, samples have been split into two cohorts with low- and high-risk scores according to the model, in which the low-risk OC patients exhibited dramatically better overall survival time than those with high-risk scores. Besides, not only was this model a prognostic factor independent of other clinical characteristics but it predicted the intensity of the immune response in OC. Significantly, the accuracy and availability of the signature were verified by ICGC database. Conclusions Our study bridged the gap between m5C RNA modification and the prognosis of OC and was expected to provide an effective breakthrough for immunotherapy in OC patients.
Collapse
Affiliation(s)
- Yibin Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shouze Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Lu Yan
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Wenhua Liu
- Department of Pain, Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, Hebei 061001, China
| | - Xianghua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| |
Collapse
|
9
|
Jiang H, Chu BL, He J, Liu Z, Yang L. Expression and prognosis analyses of the fibronectin type-III domain-containing (FNDC) protein family in human cancers: A Review. Medicine (Baltimore) 2022; 101:e31854. [PMID: 36626432 PMCID: PMC9750624 DOI: 10.1097/md.0000000000031854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in early detection and treatment, cancer continues to pose a threat to human health and is the leading cause of death worldwide. According to recent research, the fibronectin type-III domain-containing (FNDC) protein family has been implicated in several different human disorders. However, little is known regarding their expression and prognostic significance in most human malignancies. We carried out a thorough cancer vs. normal expression study using the Oncomine and Tumor Immune Estimation Resource (TIMER) databases, as well as a prognostic evaluation using the Kaplan-Meier (KM) plotter and PrognoScan databases. Oncomine revealed that the mRNA expression levels of FNDC1, FNDC3A, and FNDC3B were higher in most malignancies than in normal tissues, but the mRNA expression levels of FNDC4, FNDC5, FNDC7, and FNDC8 were downregulated in most cancers when compared with normal tissues. In survival analyses based on KM Plotter and PrognoScan, all members of the FNDC family displayed significant correlations with survival outcomes in breast, gastric, and ovarian cancers. Furthermore, the whole FNDC family, except for FNDC7 and FNDC8, was found to have substantial predictive effects in lung adenocarcinoma, but not in squamous cell lung cancer. In addition, potential connections between several FNDC family members and survival results in liver and colorectal malignancies were discovered in this study. One or more members of the FNDC family demonstrated statistically significant differences in expression between cancer and normal tissues, suggesting that they could be used as prognostic biomarkers for specific cancers.
Collapse
Affiliation(s)
- Hui Jiang
- Biobank of Pathology Department, Suining Central Hospital, Suining, Sichuan, China
| | - Bo Ling Chu
- Biobank of Pathology Department, Suining Central Hospital, Suining, Sichuan, China
| | - Jiao He
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
| | - Ling Yang
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
- * Correspondence: Ling Yang, Department of Pathology, Suining Central Hospital, 127 Desheng West Road, Suining, Sichuan 629000, China (e-mail: )
| |
Collapse
|
10
|
Yu G, Bao J, Zhan M, Wang J, Li X, Gu X, Song S, Yang Q, Liu Y, Wang Z, Xu B. Comprehensive Analysis of m5C Methylation Regulatory Genes and Tumor Microenvironment in Prostate Cancer. Front Immunol 2022; 13:914577. [PMID: 35757739 PMCID: PMC9226312 DOI: 10.3389/fimmu.2022.914577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background 5-Methylcytidine (m5C) methylation is an emerging epigenetic modification in recent years, which is associated with the development and progression of various cancers. However, the prognostic value of m5C regulatory genes and the correlation between m5C methylation and the tumor microenvironment (TME) in prostate cancer remain unknown. Methods In the current study, the genetic and transcriptional alterations and prognostic value of m5C regulatory genes were investigated in The Cancer Genome Atlas and Gene Expression Omnibus datasets. Then, an m5C prognostic model was established by LASSO Cox regression analysis. Gene set variation analyses (GSVA), gene set enrichment analysis (GSEA), clinical relevance, and TME analyses were conducted to explain the biological functions and quantify the TME scores between high-risk and low-risk subgroups. m5C regulatory gene clusters and m5C immune subtypes were identified using consensus unsupervised clustering analysis. The Cell-type Identification By Estimating Relative Subsets of RNA Transcripts algorithm was used to calculate the contents of immune cells. Results TET3 was upregulated at transcriptional levels in PCa compared with normal tissues, and a high TET3 expression was associated with poor prognosis. An m5C prognostic model consisting of 3 genes (NSUN2, TET3, and YBX1) was developed and a nomogram was constructed for improving the clinical applicability of the model. Functional analysis revealed the enrichment of pathways and the biological processes associated with RNA regulation and immune function. Significant differences were also found in the expression levels of m5C regulatory genes, TME scores, and immune cell infiltration levels between different risk subgroups. We identified two distinct m5C gene clusters and found their correlation with patient prognosis and immune cell infiltration characteristics. Naive B cells, CD8+ T cells, M1 macrophages and M2 macrophages were obtained and 2 m5C immune subtypes were identified. CTLA4, NSUN6, TET1, and TET3 were differentially expressed between immune subtypes. The expression of CTLA4 was found to be correlated with the degree of immune cell infiltration. Conclusions Our comprehensive analysis of m5C regulatory genes in PCa demonstrated their potential roles in the prognosis, clinical features, and TME. These findings may improve our understanding of m5C regulatory genes in the tumor biology of PCa.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiahao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinjuan Li
- General Medical Department, Yangpu Daqiao Community Health Service Center, Shanghai, China
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|