1
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
2
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
3
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
4
|
Petrović TG, Vučić T, Burraco P, Gavrilović BR, Despotović SG, Gavrić JP, Radovanović TB, Šajkunić S, Ivanović A, Prokić MD. Higher temperature induces oxidative stress in hybrids but not in parental species: A case study of crested newts. J Therm Biol 2023; 112:103474. [PMID: 36796919 DOI: 10.1016/j.jtherbio.2023.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance biological processes that can induce the production of reactive oxygen species and result in a state of cellular oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid's development and distribution. Understanding the impact of global warming on the physiology of hybrids and particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the present study, we investigated the effect of water temperature on the development, growth and oxidative stress of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 19°C and 24°C. Under the higher temperature, the hybrids experienced increases in both growth and developmental rates, while parental species exhibited accelerated growth (T. macedonicus) or development (T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S-transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic understanding of the resilience and distribution of hybrid species that cope with climate-driven changes.
Collapse
Affiliation(s)
- Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands.
| | - Pablo Burraco
- Doñana Biological Station (CSIC), C/ Americo Vespucci 26, 41092, Seville, Spain.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Šajkunić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|