1
|
Hanke D, McCutcheon C, Page BDG. The Development of Selective Chemical Probes for Serine Arginine Protein Kinase 3. Chem Biol Drug Des 2025; 105:e70101. [PMID: 40176684 PMCID: PMC11966184 DOI: 10.1111/cbdd.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The serine arginine protein kinases (SRPKs) are a family of kinases whose irregular function is implicated in cancer and viral infections. While the roles of SRPK1 and SRPK2 in disease are well established, much less is known about SRPK3. There are several studies implicating SRPK3 in breast cancer, but the mechanism is still unknown. This work describes the first-reported SRPK3 chemical probes that show excellent selectivity over the other SRPKs. 1-(4-cyanophenyl)-3-phenylurea was identified as an initial hit for SRPK3 through a kinase screen. Subsequent rounds of in silico docking, medicinal chemistry optimization, and biochemical assays were performed to increase its potency and selectivity for SRPK3. Six top compounds were identified that displayed single digit micromolar IC50 values in SRPK3 activity assays and negligible inhibition of SRPK1 or SRPK2. These six compounds demonstrated impairment of breast cancer cell viability that correlated with their biochemical IC50 values, suggesting that they can be used as tools to study the biological functions of SRPK3 in breast cancer. With an enhanced understanding of SRPK3's biological function, it may emerge as a meaningful drug target, wherein our top inhibitors could be further optimized to produce novel cancer therapeutics.
Collapse
Affiliation(s)
- Danielle Hanke
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Conall McCutcheon
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brent D. G. Page
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Wang J, Guo T, Zhang X, Guo J, Meng X, Yan S, Wang Y, Xiao Y, Xu W, Wei X, Ding K, Zhang J, Mi Y, Wu S, Chen J, Huang Y, Ren S, Hou J. Comprehensive investigation in oncogenic functions and immunological roles of NCBP2 and its validation in prostate cancer. Transl Oncol 2024; 47:102049. [PMID: 38964031 PMCID: PMC11283080 DOI: 10.1016/j.tranon.2024.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Nuclear cap-binding protein 2 (NCBP2), as the component of the cap-binding complex, participates in a number of biological processes, including pre-mRNA splicing, transcript export, translation regulation and other gene expression steps. However, the role of NCBP2 on the tumor cells and immune microenvironment remains unclear. To systematically analyze and validate functions of NCBP2, we performed a pan-cancer analysis using multiple approaches. METHODS The data in this study were derived from sequencing, mutation, and methylation data in the TCGA cohort, normal sample sequencing data in the GTEx project, and cell line expression profile data in the CCLE database. RESULTS Survival analyses including the Cox proportional-hazards model and log-rank test revealed the poor prognostic role of NCBP2 in multiple tumors. We further validated the oncogenic ability of NCBP2 in prostate cancer cell lines, organoids and tumor-bearing mice. A negative correlation was observed between NCBP2 expression and immune score by the ESTIMATE algorithm. Simultaneously, the NCBP2-induced immunosuppressive microenvironment might be related to the decline in CD8+T cells and the increase in regulatory T cells and neutrophils, examined by flow cytometry experiments for NCBP2 overexpressed tumor-bearing mice. CONCLUSION This research offered strong proof supporting NCBP2 as the prognostic marker and the therapeutic target in the future.
Collapse
Affiliation(s)
- Jian Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Urology, Shanghai Changzheng Hospital, Shanghai, China; Department of Urology, Shanghai Changhai Hospital, Shanghai, China; Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tao Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaomin Zhang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangyu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Shi Yan
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Ye Wang
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Sheng Wu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jie Chen
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Tufail M, Wu C. SRPKs: a promising therapeutic target in cancer. Clin Exp Med 2023; 23:3093-3112. [PMID: 37027068 DOI: 10.1007/s10238-023-01054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cancers such as lung, breast, colon, and prostate have been linked to dysregulation of SRPKs. In preclinical studies, inhibition of SRPKs has been shown to reduce the growth and survival of cancer cells, suggesting that SRPKs may be potential therapeutic targets. Research is ongoing to develop small molecule inhibitors of SRPKs, identify specific SRPKs that are important in different cancer types, and explore the use of RNA interference (RNAi) to target SRPKs. In addition, researchers are examining the potential of using SRPK inhibitors in combination with other cancer therapies, such as chemotherapy or immunotherapy, to improve treatment outcomes. However, more research is needed to fully understand the role of SRPKs in cancer and determine the most effective ways to target them. In the present review, we shed light on the role of SRPKs in most common cancers, its role in cancer resistance, and targeting it for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
4
|
Zhang H, Tian J, Ren S, Han B, Tian R, Zuo X, Liu H, Wang Z, Cui Y, Liu L, Guo H, Zhang F, Niu R. Comprehensively analysis of splicing factors to construct prognosis prediction classifier in prostate cancer. J Cell Mol Med 2023; 27:2684-2700. [PMID: 37559353 PMCID: PMC10494302 DOI: 10.1111/jcmm.17849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Splicing factors (SFs) are proteins that control the alternative splicing (AS) of RNAs, which have been recognized as new cancer hallmarks. Their dysregulation has been found to be involved in many biological processes of cancer, such as carcinogenesis, proliferation, metastasis and senescence. Dysregulation of SFs has been demonstrated to contribute to the progression of prostate cancer (PCa). However, a comprehensive analysis of the prognosis value of SFs in PCa is limited. In this work, we systematically analysed 393 SFs to deeply characterize the expression patterns, clinical relevance and biological functions of SFs in PCa. We identified 53 survival-related SFs that can stratify PCa into two de nove molecular subtypes with distinct mRNA expression and AS-event expression patterns and displayed significant differences in pathway activity and clinical outcomes. An SF-based classifier was established using LASSO-COX regression with six key SFs (BCAS1, LSM3, DHX16, NOVA2, RBM47 and SNRPN), which showed promising prognosis-prediction performance with a receiver operating characteristic (ROC) >0.700 in both the training and testing datasets, as well as in three external PCa cohorts (DKFZ, GSE70769 and GSE21035). CRISPR/CAS9 screening data and cell-level functional analysis suggested that LSM3 and DHX16 are essential factors for the proliferation and cell cycle progression in PCa cells. This study proposes that SFs and AS events are potential multidimensional biomarkers for the diagnosis, prognosis and treatment of PCa.
Collapse
Affiliation(s)
- He Zhang
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jianfei Tian
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixin Ren
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Baoai Han
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Ruinan Tian
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaoyan Zuo
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hui Liu
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhiyong Wang
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yanfen Cui
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Liming Liu
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hui Guo
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Fei Zhang
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Ruifang Niu
- Public LaboratoryTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
6
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|