1
|
Naseem R, Howe N, Williams CJ, Pretorius S, Green K. What diagnostic tests are available for respiratory infections or pulmonary exacerbations in cystic fibrosis: A scoping literature review. Respir Investig 2024; 62:817-831. [PMID: 39024929 DOI: 10.1016/j.resinv.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
A scoping review methodological framework formed the basis of this review. A search of two electronic databases captured relevant literature published from 2013. 1184 articles were screened, 200 of which met inclusion criteria. Included studies were categorised as tests for either respiratory infections OR pulmonary exacerbations. Data were extracted to ascertain test type, sample type, and indication of use for each test type. For infection, culture is the most common testing method, particularly for bacterial infections, whereas PCR is utilised more for the diagnosis of viral infections. Spirometry tests, indicating lung function, facilitate respiratory infection diagnoses. There is no clear definition of what an exacerbation is in persons with CF. A clinical checklist with risk criteria can determine if a patient is experiencing an exacerbation event, however the diagnosis is clinician-led and will vary between individuals. Fuchs criteria are one of the most frequently used tests to assess signs and symptoms of exacerbation in persons with CF. This scoping review highlights the development of home monitoring tests to facilitate earlier and easier diagnoses, and the identification of novel biomarkers for indication of infections/exacerbations as areas of current research and development. Research is particularly prevalent regarding exhaled breath condensate and volatile organic compounds as an alternative sampling/biomarker respectively for infection diagnosis. Whilst there are a wide range of tests available for diagnosing respiratory infections and/or exacerbations, these are typically used clinically in combination to ensure a rapid, accurate diagnosis which will ultimately benefit both the patient and clinician.
Collapse
Affiliation(s)
- Raasti Naseem
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Nicola Howe
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Cameron J Williams
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Sara Pretorius
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Kile Green
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
3
|
Yang YQ, Ge P, Lv MQ, Yu PF, Liu ZG, Zhang J, Zhao WB, Han SP, Sun RF, Zhou DX. Rno_circRNA_008646 regulates formaldehyde induced lung injury through Rno-miR-224 mediated FOXI1/CFTR axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113999. [PMID: 35998475 DOI: 10.1016/j.ecoenv.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (FA) serves as a prevailing air pollutant, which has seriously threatened public health in recent years. Of all the known health effects, lung injury is one of the most severe risks. However, little is known about the circRNAs related molecular mechanism in the development of lung injury induced by FA. This study was designed to explore the potential roles of dysregulated circRNAs as well as its mechanism in FA-induced lung injury. In the present study, 24 male SD rats were exposed to formaldehyde (control, 0.5, 2.46 and 5 mg/m3) for 8 h per day for 8 weeks to induce lung injury. We used H&E staining to evaluate the histopathological changes of lung injury indifferent groups. The expression of circRNAs in lung tissue was detected by real-time PCR. Meanwhile, circRNA/miRNA/mRNA interaction networks were predicted by bioinformatics analysis. Our study revealed that formaldehyde exposure resulted in abnormal histopathological changes in lung tissues. Moreover, the expression of rno_circRNA_008646 was significantly higher in lung tissues of formaldehyde exposure rats than in control. Bioinformatics analysis showed that one potential target miRNA/mRNA for rno_circRNA_008646 was rno-miR-224/Forkhead Box I1 (FOXI1). Besides, luciferase report gene confirmed that there was targeted binding relationship between rno_circRNA_008646 and rno-miR-224, rno-miR-224 and FOXI1. Further verification experiments indicated that the expression of rno_circRNA_008646 was negatively correlated rno-miR-224, while it was positively correlated with FOXI1. JASPAR database showed transcription factor FOXI1 located in promotor of CF Transmembrane Conductance Regulator (CFTR). Both FOXI1 and CFTR were up-regulated in lung tissues after formaldehyde exposure. In conclusion, our findings suggested that formaldehyde may induce lung injury, and this may be caused by up-regulatedrno_circRNA_008646, which medicated rno-miR-224/FOXI1/CFTR axis.
Collapse
Affiliation(s)
- Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Peng-Fei Yu
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Changlexi St. 127#, Xi'an, Shaanxi, PR China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Wen-Bao Zhao
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Shui-Ping Han
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|