1
|
Xie J, Wang X. Multiple-omics analysis of aggrephagy-related cellular patterns and development of an aggrephagy-related signature for hepatocellular carcinoma. World J Surg Oncol 2025; 23:175. [PMID: 40307857 PMCID: PMC12044776 DOI: 10.1186/s12957-025-03816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Protein aggrephagy, a selected autophagy process response for degrading protein aggregates, plays a critical role in various cancers. However, its regulatory mechanisms and clinical implications in hepatocellular carcinoma (HCC) remain largely unexplored. METHODS We integrated bulk RNA-seq data from TCGA and single-cell RNA sequencing (scRNA-seq) data from GEO databases to systematically analyze aggrephagy-related genes (AGGRGs) in HCC. Prognostic aggrephagy-related genes (AGGRGs) were identified through univariate Cox and LASSO regression analyses, followed by the construction of a risk prediction model. Patients were stratified into high- and low-risk groups based on the median risk score. Comparative analyses were performed to assess clinical outcomes, pathway enrichment, and drug sensitivity. Independent risk factors were incorporated a nomogram using univariate and multivariate Cox regression. At the single-cell level, the AGG scores were calculated using AUCell algorithm, and cell interactions and pseudotime trajectory analyses were conducted. Finally, protein levels of key AGGRG was assessed via tissue microarray. RESULTS Eight AGGRGs (PFKP, TPX2, UBE2S, GOT2, ST6GALNAC4, ADAM15, G6PD, and KPNA2) were identified as prognostic markers for HCC. The high-risk group exhibited significantly worse survival outcomes, heightened drug resistance, and enrichment in cell cycle, mTORC1 signaling, and reactive oxygen species pathways. Single-cell transcriptomic analysis revealed 11 distinct cell types within the HCC tumor microenvironment (TME), including hepatocytes, T cells, NK cells, macrophages, monocytes, dendritic cells, plasma B cells, mature B cells, mast cells, endothelial cells, and fibroblasts. Hepatocytes exhibited the highest AGGRG scores and were associated with metabolic reprograming, proliferation, and immune evasion. Further subclustering of malignant hepatocytes using inferCNV revealed eight functionally heterogeneous subpopulations with extensive intercellular crosstalk. Trajectory analysis showed G6PD- and CCNB1-expressing subpopulations in early-to-intermediate differentiation states, whereas C3 and ARGs marked terminal differentiation. Notably, G6PD was predominantly expressed in early and mid-stages, while KPNA2, PFKP, and TPX2 were upregulated in advanced tumor states. Immunohistochemical (IHC) validation confirmed significant overexpression of G6PD in HCC tissues compared to adjacent normal tissues. CONCLUSION These findings provide a molecular framework for targeting aggrephagy pathways in HCC treatment strategies.
Collapse
Affiliation(s)
- Jiafen Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Yuexiu District, Guangzhou, 510120, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Bai J, Bai J, Zhang H. FOXA1-mediated transcription of MFAP2 facilitates cell growth, metastasis and cisplatin resistance in uterine corpus endometrial carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04041-x. [PMID: 40153018 DOI: 10.1007/s00210-025-04041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/07/2025] [Indexed: 03/30/2025]
Abstract
Microfibril-associated protein 2 (MFAP2) has been confirmed to be an oncogene to participate in regulating the progression of many cancers. However, its role and mechanism in the development of uterine corpus endometrial carcinoma (UCEC) are still unclear. The mRNA and protein levels of MFAP2 and forkhead box A1 (FOXA1) were determined using qRT-PCR and western blot. Cell proliferation, apoptosis, migration, invasion and cisplatin resistance were detected by colony formation assay, EdU assay, flow cytometry, transwell assay and CCK8 assay. Xenograft tumor models were constructed to explore the effect of MFAP2 knockdown on UCEC tumorigenesis and cisplatin resistance in vivo. The interaction between FOXA1 and MFAP2 promoter was evaluated by ChIP assay and dual-luciferase reporter assay. MFAP2 was upregulated in UCEC tissues and cells. Silencing of MFAP2 repressed UCEC cell growth, metastasis and cisplatin resistance in vitro, as well as reduced tumorigenesis in vivo. In terms of mechanism, FOXA1 bound to MFAP2 promoter region to increase its expression. FOXA1 knockdown could inhibit UCEC cell growth, metastasis and cisplatin resistance. Moreover, FOXA1 promoted growth, metastasis and cisplatin resistance in UCEC cells via enhancing MFAP2 expression. FOXA1-activated MFAP2 might contribute to the growth, metastasis and cisplatin resistance of UCEC cells, providing a novel target for UCEC treatment.
Collapse
Affiliation(s)
- Jie Bai
- Department of Gynecology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jing Bai
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Hongzhen Zhang
- Department of Gynecology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Miao L, Chen B, Jing L, Zeng T, Chen Y. TPD52 as a Potential Prognostic Biomarker and its Correlation with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma: Bioinformatic Analysis and Experimental Verification. Recent Pat Anticancer Drug Discov 2025; 20:71-88. [PMID: 38305309 DOI: 10.2174/0115748928267447231107101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Aberrant expression of tumor protein D52 (TPD52) is associated with some tumors. The role of TPD52 in uterine corpus endometrial carcinoma (UCEC) remains uncertain. OBJECTIVE We aimed to investigate the involvement of TPD52 in the pathogenesis of UCEC. METHODS We employed bioinformatics analysis and experimental validation in our study. RESULTS Our findings indicated that elevated TPD52 expression in UCEC was significantly associated with various clinical factors, including clinical stage, race, weight, body mass index (BMI), histological type, histological grade, surgical approach, and age (p < 0.01). Furthermore, high TPD52 expression was a predictor of poorer overall survival (OS), progress-free survival (PFS), and disease-specific survival (DSS) (p = 0.011, p = 0.006, and p = 0.003, respectively). TPD52 exhibited a significant correlation with DSS (HR: 2.500; 95% CI: 1.153-5.419; p = 0.02). TPD52 was involved in GPCR ligand binding and formation of the cornified envelope in UCEC. Moreover, TPD52 expression was found to be associated with immune infiltration, immune checkpoints, tumor mutation burden (TMB)/ microsatellite instability (MSI), and mRNA stemness indices (mRNAsi). The somatic mutation rate of TPD52 in UCEC was 1.9%. A ceRNA network of AC011447.7/miR-1-3p/TPD52 was constructed. There was excessive TPD52 protein expression. The upregulation of TPD52 expression in UCEC cell lines was found to be statistically significant. CONCLUSION TPD52 is upregulated in UCEC and may be a useful patent for prognostic biomarkers of UCEC, which may have important value for clinical treatment and supervision of UCEC patients.
Collapse
Affiliation(s)
- Lu Miao
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215026, Suzhou, Jiangsu, China
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Li Jing
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Tian Zeng
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215026, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Lv M, Zhao Y, Chang S, Gao Z. Identifying signature genes and their associations with immune cell infiltration in spinal cord injury. IBRO Neurosci Rep 2024; 17:320-328. [PMID: 39430218 PMCID: PMC11490871 DOI: 10.1016/j.ibneur.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background Early detection of spinal cord injury (SCI) is conducive to improving patient outcomes. In addition, many studies have revealed the role of immune cells in the progression or treatment of SCI. The objective of this study was to identify the early signature genes and clarify how they are related to immune cell infiltration in SCI. Methods We analysed and identified early signature genes associated with SCI via bioinformatics analysis of the GSE151371 dataset from the GEO database. These genes were subsequently verified in the GSE33886 dataset and qRT-PCR. Finally, the CIBERSORT algorithm was used to examine the immune cell infiltration in SCI and its relationship with signature genes. Results Seven SCI-related signature genes, including ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, and HIST1H2BJ, were identified, and their expression was verified via an external validation cohort and qRT-PCR. Moreover, the ROC curves revealed the diagnostic value of these genes. In addition, on the basis of immune cell infiltration analysis, plasma cells, M0 macrophages, activated CD4+ memory T cells, γδ T cells, naive CD4+ T cells, and resting CD4+ memory T cells may participate in the progression of SCI. Conclusion This study identified seven early signature genes of SCI that may serve as biomarkers for the early diagnosis of SCI and contribute to our understanding of immune changes during the pathology of SCI.
Collapse
Affiliation(s)
- Meng Lv
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Yingjie Zhao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Su’e Chang
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
5
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
6
|
Wingo AP, Liu Y, Gerasimov ES, Vattathil SM, Liu J, Cutler DJ, Epstein MP, Blokland GAM, Thambisetty M, Troncoso JC, Duong DM, Bennett DA, Levey AI, Seyfried NT, Wingo TS. Sex differences in brain protein expression and disease. Nat Med 2023; 29:2224-2232. [PMID: 37653343 PMCID: PMC10504083 DOI: 10.1038/s41591-023-02509-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Most complex human traits differ by sex, but we have limited insight into the underlying mechanisms. Here, we investigated the influence of biological sex on protein expression and its genetic regulation in 1,277 human brain proteomes. We found that 13.2% (1,354) of brain proteins had sex-differentiated abundance and 1.5% (150) of proteins had sex-biased protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased expression, we found 67% concordance between sex-differentiated protein and transcript levels; however, sex effects on the genetic regulation of expression were more evident at the protein level. Considering 24 psychiatric, neurologic and brain morphologic traits, we found that an average of 25% of their putatively causal genes had sex-differentiated protein abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore, integrating sex-specific pQTLs with sex-stratified genome-wide association studies of six psychiatric and neurologic conditions, we uncovered another 23 proteins contributing to these traits in one sex but not the other. Together, these findings begin to provide insights into mechanisms underlying sex differences in brain protein expression and disease.
Collapse
Affiliation(s)
- Aliza P Wingo
- Veterans Affairs Atlanta Health Care System, Decatur, GA, USA.
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Gao L, Wang X, Wang X, Wang F, Tang J, Ji J. A prognostic model and immune regulation analysis of uterine corpus endometrial carcinoma based on cellular senescence. Front Oncol 2022; 12:1054564. [PMID: 36568182 PMCID: PMC9775865 DOI: 10.3389/fonc.2022.1054564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the clinical significance of cellular senescence in uterine corpus endometrial carcinoma (UCEC). Methods Cluster analysis was performed on GEO data and TCGA data based on cellular senescence related genes, and then performed subtype analysis on differentially expressed genes between subtypes. The prognostic model was constructed using Lasso regression. Survival analysis, microenvironment analysis, immune analysis, mutation analysis, and drug susceptibility analysis were performed to evaluate the practical relevance. Ultimately, a clinical nomogram was constructed and cellular senescence-related genes expression was investigated by qRT-PCR. Results We ultimately identified two subtypes. The prognostic model divides patients into high-risk and low-risk groups. There were notable discrepancies in prognosis, tumor microenvironment, immunity, and mutation between the two subtypes and groups. There was a notable connection between drug-sensitive and risk scores. The nomogram has good calibration with AUC values between 0.75-0.8. In addition, cellular senescence-related genes expression was investigated qRT-PCR. Conclusion Our model and nomogram may effectively forecast patient prognosis and serve as a reference for patient management.
Collapse
Affiliation(s)
- Lulu Gao
- Department of Obstetrics and Gynecology, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Integrated Traditional Chinese and Western Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China,Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China,*Correspondence: Juan Tang, ; Jinfeng Ji,
| | - Jinfeng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China,*Correspondence: Juan Tang, ; Jinfeng Ji,
| |
Collapse
|
8
|
Zhu M, Liu N, Lin J, Wang J, Lai H, Liu Y. HDAC7 inhibits cell proliferation via NudCD1/GGH axis in triple-negative breast cancer. Oncol Lett 2022; 25:33. [PMID: 36589669 PMCID: PMC9773322 DOI: 10.3892/ol.2022.13619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. In the absence of effective molecular markers for TNBC, there is an urgent clinical need for promising therapeutic target for TNBC. Histone deacetylases (HDACs), key regulators for chromatin remodeling and gene expression, have been suggested to play critical roles in cancer development. However, little is known ~the functions and implications of HDACs in TNBC treatment in the future. By analyzing the expression and prognostic significance of HDAC family members in TNBC through TCGA and METABRIC databases, HDAC7 was found to be downregulated in TNBC samples and the survival of patients with lower expression of HDAC7 was shorter. Furthermore, HDAC7 was negatively associated with NudC domain containing 1 (NudCD1) and γ-glutamyl hydrolase (GGH). Loss of NudCD1 or GGH predicted improved overall survival time (OS) of patients with TNBC. In vitro experiments showed that silencing of HDAC7 enhanced TNBC cell proliferation, while overexpression HDAC7 inhibited TNBC cell proliferation. The results of functional experiments confirmed that HDAC7 negatively modulated GGH and NudCD1 expression. Furthermore, decrease of NudCD1 or GGH inhibited cell proliferation. Notably, the HDAC7-NudCD1/GGH axis was found to be associated with NK cell infiltration. Overall, the present study revealed a novel role of HDAC7-NudCD1/GGH axis in TNBC, which might provide a promising treatment strategy for patients with TNBC.
Collapse
Affiliation(s)
- Mengdi Zhu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Nianqiu Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Jinna Lin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jingru Wang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hongna Lai
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Correspondence to: Dr Yujie Liu or Dr Hongna Lai, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 33 Yingfeng Road, Haizhu, Guangzhou, Guangdong 510120, P.R. China, E-mail: , E-mail:
| | - Yujie Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China,Correspondence to: Dr Yujie Liu or Dr Hongna Lai, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 33 Yingfeng Road, Haizhu, Guangzhou, Guangdong 510120, P.R. China, E-mail: , E-mail:
| |
Collapse
|
9
|
Huang X, Li Y, Li J, Yang X, Xiao J, Xu F. The Expression of Pyroptosis-Related Gene May Influence the Occurrence, Development, and Prognosis of Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:885114. [PMID: 35574367 PMCID: PMC9103195 DOI: 10.3389/fonc.2022.885114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that pyroptosis exerts key roles in the occurrence, development, and prognosis of uterine corpus endometrial carcinoma (UCEC). However, the mechanism of pyroptosis and its predictive value for prognosis remain largely unknown. METHODS UCEC data were acquired from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes in UCEC vs. normal cases were selected to perform a weighted correlation network analysis (WGCNA). Forty-two UCEC-associated pyroptosis-related genes were identified via applying differential expression analysis. Protein-protein interaction (PPI) and gene correlation analyses were applied to explore the relationship between 21 UCEC key genes and 42 UCEC-associated pyroptosis-related genes. The expression of 42 UCEC-associated pyroptosis-related genes of different grades was also calculated. The immune environment of UCEC was evaluated. Furthermore, pyroptosis-related genes were filtered out by the co-expression. Univariate and a least absolute shrinkage and selection operator (LASSO) Cox analyses were implemented to yield a pyroptosis-related gene model. We also performed consensus classification to regroup UCEC samples into two clusters. A clinically relevant heatmap and survival analysis curve were implemented to explore the clinicopathological features and relationship between two clusters. Furthermore, a Kaplan-Meier survival analysis was implemented to analyze the risk model. RESULTS Twenty-one UCEC key genes and 42 UCEC-associated pyroptosis-related genes were identified. The PPI and gene correlation analysis showed a clear relationship. The expression of 42 UCEC-associated pyroptosis-related genes of different grades was also depicted. A risk model based on pyroptosis-related genes was then developed to forecast overall survival among UCEC patients. Finally, Cox regression analysis verified this model as an independent risk factor for UCEC patients. CONCLUSIONS The expression of pyroptosis-related gene may influence UCEC occurrence, development, and prognosis.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yangyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiena Li
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, China
| | - Xinbin Yang
- Department of Thoracic Surgical Oncology, The Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Xiao
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|