1
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Sisó S, Kavirayani AM, Couto S, Stierstorfer B, Mohanan S, Morel C, Marella M, Bangari DS, Clark E, Schwartz A, Carreira V. Trends and Challenges of the Modern Pathology Laboratory for Biopharmaceutical Research Excellence. Toxicol Pathol 2025; 53:5-20. [PMID: 39673215 DOI: 10.1177/01926233241303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Pathology, a fundamental discipline that bridges basic scientific discovery to the clinic, is integral to successful drug development. Intrinsically multimodal and multidimensional, anatomic pathology continues to be empowered by advancements in molecular and digital technologies enabling the spatial tissue detection of biomolecules such as genes, transcripts, and proteins. Over the past two decades, breakthroughs in spatial molecular biology technologies and advancements in automation and digitization of laboratory processes have enabled the implementation of higher throughput assays and the generation of extensive molecular data sets from tissue sections in biopharmaceutical research and development research units. It is our goal to provide readers with some rationale, advice, and ideas to help establish a modern molecular pathology laboratory to meet the emerging needs of biopharmaceutical research. This manuscript provides (1) a high-level overview of the current state and future vision for excellence in research pathology practice and (2) shared perspectives on how to optimally leverage the expertise of discovery, toxicologic, and translational pathologists to provide effective spatial, molecular, and digital pathology data to support modern drug discovery. It captures insights from the experiences, challenges, and solutions from pathology laboratories of various biopharmaceutical organizations, including their approaches to troubleshooting and adopting new technologies.
Collapse
Affiliation(s)
- Sílvia Sisó
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | - Mathiew Marella
- Janssen Research & Development, LLC, La Jolla, California, USA
| | | | - Elizabeth Clark
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | |
Collapse
|
3
|
Babaei S, Christ J, Sehra V, Makky A, Zidane M, Wistuba-Hamprecht K, Schürch C, Claassen M. S 3-CIMA: Supervised spatial single-cell image analysis for identifying disease-associated cell-type compositions in tissue. PATTERNS (NEW YORK, N.Y.) 2023; 4:100829. [PMID: 37720335 PMCID: PMC10500029 DOI: 10.1016/j.patter.2023.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The spatial organization of various cell types within the tissue microenvironment is a key element for the formation of physiological and pathological processes, including cancer and autoimmune diseases. Here, we present S3-CIMA, a weakly supervised convolutional neural network model that enables the detection of disease-specific microenvironment compositions from high-dimensional proteomic imaging data. We demonstrate the utility of this approach by determining cancer outcome- and cellular-signaling-specific spatial cell-state compositions in highly multiplexed fluorescence microscopy data of the tumor microenvironment in colorectal cancer. Moreover, we use S3-CIMA to identify disease-onset-specific changes of the pancreatic tissue microenvironment in type 1 diabetes using imaging mass-cytometry data. We evaluated S3-CIMA as a powerful tool to discover novel disease-associated spatial cellular interactions from currently available and future spatial biology datasets.
Collapse
Affiliation(s)
- Sepideh Babaei
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Christ
- Department of Physics, University of Vienna, Vienna, Austria
| | - Vivek Sehra
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Ahmad Makky
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Mohammed Zidane
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute of Cell Biology, University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Christian Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Fournier M, Leclerc P, Leray A, Champelovier D, Agbazahou F, Dahmani F, Bidaux G, Furlan A, Héliot L. Combined SPT and FCS methods reveal a mechanism of RNAP II oversampling in cell nuclei. Sci Rep 2023; 13:14633. [PMID: 37669988 PMCID: PMC10480184 DOI: 10.1038/s41598-023-38668-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 09/07/2023] Open
Abstract
Gene expression orchestration is a key question in fundamental and applied research. Different models for transcription regulation were proposed, yet the dynamic regulation of RNA polymerase II (RNAP II) activity remains a matter of debate. To improve our knowledge of this topic, we investigated RNAP II motility in eukaryotic cells by combining single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS) techniques, to take advantage of their different sensitivities in order to analyze together slow and fast molecular movements. Thanks to calibrated samples, we developed a benchmark for quantitative analysis of molecular dynamics, to eliminate the main potential instrumental biases. We applied this workflow to study the diffusion of RPB1, the catalytic subunit of RNAP II. By a cross-analysis of FCS and SPT, we could highlight different RPB1 motility states and identifyed a stationary state, a slow diffusion state, and two different modes of subdiffusion. Interestingly, our analysis also unveiled the oversampling by RPB1 of nuclear subdomains. Based on these data, we propose a novel model of spatio-temporal transcription regulation. Altogether, our results highlight the importance of combining microscopy approaches at different time scales to get a full insight into the real complexity of molecular kinetics in cells.
Collapse
Affiliation(s)
- Marie Fournier
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Pierre Leclerc
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche Comte, Dijon, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Dorian Champelovier
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Florence Agbazahou
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Fatima Dahmani
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Gabriel Bidaux
- INSERM UMR 1060, CarMeN Laboratory, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, Univ Lyon1, Lyon, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Alessandro Furlan
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 -CANTHER -Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, 59000, France.
- Unité Tumorigenèse et Résistance aux Traitements, Centre Oscar Lambret, 59000, Lille, France.
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
5
|
Gelléri M, Chen SY, Hübner B, Neumann J, Kröger O, Sadlo F, Imhoff J, Hendzel MJ, Cremer M, Cremer T, Strickfaden H, Cremer C. True-to-scale DNA-density maps correlate with major accessibility differences between active and inactive chromatin. Cell Rep 2023; 42:112567. [PMID: 37243597 DOI: 10.1016/j.celrep.2023.112567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Chromatin compaction differences may have a strong impact on accessibility of individual macromolecules and macromolecular assemblies to their DNA target sites. Estimates based on fluorescence microscopy with conventional resolution, however, suggest only modest compaction differences (∼2-10×) between the active nuclear compartment (ANC) and inactive nuclear compartment (INC). Here, we present maps of nuclear landscapes with true-to-scale DNA densities, ranging from <5 to >300 Mbp/μm3. Maps are generated from individual human and mouse cell nuclei with single-molecule localization microscopy at ∼20 nm lateral and ∼100 nm axial optical resolution and are supplemented by electron spectroscopic imaging. Microinjection of fluorescent nanobeads with sizes corresponding to macromolecular assemblies for transcription into nuclei of living cells demonstrates their localization and movements within the ANC and exclusion from the INC.
Collapse
Affiliation(s)
- Márton Gelléri
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Shih-Ya Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Jan Neumann
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Ole Kröger
- Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany
| | - Filip Sadlo
- Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany
| | - Jorg Imhoff
- Neuroconsult GmbH, 69120 Heidelberg, Germany
| | - Michael J Hendzel
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Hilmar Strickfaden
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Max Planck Institute for Chemistry, 55128 Mainz, Germany; Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany; Kirchhoff Institute for Physics, University Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
7
|
Bencurova E, Akash A, Dobson RC, Dandekar T. DNA storage-from natural biology to synthetic biology. Comput Struct Biotechnol J 2023; 21:1227-1235. [PMID: 36817961 PMCID: PMC9932295 DOI: 10.1016/j.csbj.2023.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany,Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Corresponding author at: Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Suravajhala P, Goltsov A. Three Grand Challenges in High Throughput Omics Technologies. Biomolecules 2022; 12:biom12091238. [PMID: 36139077 PMCID: PMC9496467 DOI: 10.3390/biom12091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Amritapuri, Clappana, Kerala 690525, India
- Bioclues.org, Hyderabad 500072, India
- Correspondence:
| | - Alexey Goltsov
- Biocybernetics Systems and Technologies Division, Institute for Artificial intelligence, MIREA–Russian Technological University, 119454 Moscow, Russia
| |
Collapse
|
9
|
The era of 3D and spatial genomics. Trends Genet 2022; 38:1062-1075. [PMID: 35680466 DOI: 10.1016/j.tig.2022.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/28/2022]
Abstract
Over a decade ago the advent of high-throughput chromosome conformation capture (Hi-C) sparked a new era of 3D genomics. Since then the number of methods for mapping the 3D genome has flourished, enabling an ever-increasing understanding of how DNA is packaged in the nucleus and how the spatiotemporal organization of the genome orchestrates its vital functions. More recently, the next generation of spatial genomics technologies has begun to reveal how genome sequence and 3D genome organization vary between cells in their tissue context. We summarize how the toolkit for charting genome topology has evolved over the past decade and discuss how new technological developments are advancing the field of 3D and spatial genomics.
Collapse
|
10
|
Madsen-Østerbye J, Bellanger A, Galigniana NM, Collas P. Biology and Model Predictions of the Dynamics and Heterogeneity of Chromatin-Nuclear Lamina Interactions. Front Cell Dev Biol 2022; 10:913458. [PMID: 35693945 PMCID: PMC9178083 DOI: 10.3389/fcell.2022.913458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Associations of chromatin with the nuclear lamina, at the nuclear periphery, help shape the genome in 3 dimensions. The genomic landscape of lamina-associated domains (LADs) is well characterized, but much remains unknown on the physical and mechanistic properties of chromatin conformation at the nuclear lamina. Computational models of chromatin folding at, and interactions with, a surface representing the nuclear lamina are emerging in attempts to characterize these properties and predict chromatin behavior at the lamina in health and disease. Here, we highlight the heterogeneous nature of the nuclear lamina and LADs, outline the main 3-dimensional chromatin structural modeling methods, review applications of modeling chromatin-lamina interactions and discuss biological insights inferred from these models in normal and disease states. Lastly, we address perspectives on future developments in modeling chromatin interactions with the nuclear lamina.
Collapse
Affiliation(s)
- Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|