1
|
Ruffo P, Traynor BJ, Conforti FL. Advancements in genetic research and RNA therapy strategies for amyotrophic lateral sclerosis (ALS): current progress and future prospects. J Neurol 2025; 272:233. [PMID: 40009238 PMCID: PMC11865122 DOI: 10.1007/s00415-025-12975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
This review explores the intricate landscape of neurodegenerative disease research, focusing on Amyotrophic Lateral Sclerosis (ALS) and the intersection of genetics and RNA biology to investigate the causative pathogenetic basis of this fatal disease. ALS is a severe neurodegenerative disease characterized by the progressive loss of motor neurons, leading to muscle weakness and paralysis. Despite significant research advances, the exact cause of ALS remains largely unknown. Thanks to the application of next-generation sequencing (NGS) approaches, it was possible to highlight the fundamental role of rare variants with large effect sizes and involvement of portions of non-coding RNA, providing valuable information on risk prediction, diagnosis, and treatment of age-related diseases, such as ALS. Genetic research has provided valuable insights into the pathophysiology of ALS, leading to the development of targeted therapies such as antisense oligonucleotides (ASOs). Regulatory agencies in several countries are evaluating the commercialization of Qalsody (Tofersen) for SOD1-associated ALS, highlighting the potential of gene-targeted therapies. Furthermore, the emerging significance of microRNAs (miRNAs) and long RNAs are of great interest. MiRNAs have emerged as promising biomarkers for diagnosing ALS and monitoring disease progression. Understanding the role of lncRNAs in the pathogenesis of ALS opens new avenues for therapeutic intervention. However, challenges remain in delivering RNA-based therapeutics to the central nervous system. Advances in genetic screening and personalized medicine hold promise for improving the management of ALS. Ongoing clinical trials use genomic approaches for patient stratification and drug targeting. Further research into the role of non-coding RNAs in the pathogenesis of ALS and their potential as therapeutic targets is crucial to the development of effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
2
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Poloni JF, Oliveira FHS, Feltes BC. Localization is the key to action: regulatory peculiarities of lncRNAs. Front Genet 2024; 15:1478352. [PMID: 39737005 PMCID: PMC11683014 DOI: 10.3389/fgene.2024.1478352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate. In this sense, the subcellular localization of lncRNAs is the primary determinant of their functions. It affects their behavior by limiting their potential molecular partner and which process it can affect. The fine-tuned activity of lncRNAs is also tissue-specific and modulated by their cis and trans regulation. Hence, the spatial context of lncRNAs is crucial for understanding the regulatory networks by which they influence and are influenced. Therefore, predicting a lncRNA's correct location is not just a technical challenge but a critical step in understanding the biological meaning of its activity. Hence, examining these peculiarities is crucial to researching and discussing lncRNAs. In this review, we debate the spatial regulation of lncRNAs and their tissue-specific roles and regulatory mechanisms. We also briefly highlight how bioinformatic tools can aid research in the area.
Collapse
Affiliation(s)
| | | | - Bruno César Feltes
- Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Yousefnia S. A comprehensive review on lncRNA LOXL1-AS1: molecular mechanistic pathways of lncRNA LOXL1-AS1 in tumorigenicity of cancer cells. Front Oncol 2024; 14:1384342. [PMID: 39136001 PMCID: PMC11317273 DOI: 10.3389/fonc.2024.1384342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are versatile RNAs that regulate various cellular processes, such as gene regulation, by acting as signals, decoys, guides, and scaffolds. A novel recognized lncRNA, LOXL1-antisense RNA 1 (LOXL1-AS1), is dysregulated in some diseases, including cancer, and acts as an oncogenic lncRNA in many types of cancer cells. Upregulation of LOXL1-AS1 has been involved in proliferation, migration, metastasis, and EMT, as well as inhibiting apoptosis in cancer cells. Most importantly, the malignant promoting activity of LOXL1-AS1 can be mostly mediated by sequestering specific miRNAs and inhibiting their binding to the 3´UTR of their target mRNAs, thereby indirectly regulating gene expression. Additionally, LOXL1-AS1 can decoy transcription factors and proteins and prevent their binding to their regulatory regions, inhibiting their mechanistic activity on the regulation of gene expression and signaling pathways. This review presents the mechanistic pathways of the oncogenic role of LOXL1-AS1 by modulating its target miRNAs and proteins in various cancer cells. Having information about the molecular mechanisms regulated by LOXL1-AS1 in cancer cells can open ways to find out particular prognostic biomarkers, as well as discover novel therapeutic approaches for different types of cancer.
Collapse
Affiliation(s)
- Saghar Yousefnia
- Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
| |
Collapse
|
5
|
Bhor S, Tonny SH, Dinesh S, Sharma S. Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation. In Silico Pharmacol 2024; 12:20. [PMID: 38559706 PMCID: PMC10973320 DOI: 10.1007/s40203-024-00191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a complicated neurodegenerative disorder affected by hereditary and environmental variables, is a condition. In this study, the genetic makeup of ALS is investigated, with a focus on the SOD1 gene's single-nucleotide polymorphisms (SNPs) and their ability to affect disease risk. Eleven high-risk missense variations that may impair the functionality of the SOD1 protein were discovered after a thorough examination of SNPs in the SOD1 gene. These mutations were chosen using a variety of prediction approaches, highlighting their importance in the aetiology of ALS. Notably, it was discovered that the stability of the SOD1 wild-type protein structure was compromised by the G38R and G42D SOD1 variants. Additionally, Edaravone, a possible ALS medication, showed a greater affinity for binding mutant SOD1 structures, pointing to potential personalised treatment possibilities. The high-risk SNPs discovered in this investigation seem to have functional effects, especially on the stability of proteins and their interactions with other molecules. This study clarifies the complex genetics of ALS and offers insights into how these genetic variations may affect the effectiveness of therapeutic interventions, particularly in the context of edaravone. In this study advances our knowledge of the genetic mechanisms causing ALS vulnerability and prospective therapeutic strategies. Future studies are necessary to confirm these results and close the gap between individualised clinical applications and improved ALS care.
Collapse
Affiliation(s)
- Samiksha Bhor
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| | - Sadia Haque Tonny
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| |
Collapse
|
6
|
Belete MA, Tadesse S, Tilahun M, Gedefie A, Shibabaw A, Mulatie Z, Wudu MA, Gebremichael S, Debash H, Alebachew M, Alemayehu E. Long noncoding RNAs and circular RNAs as potential diagnostic biomarkers of inflammatory bowel diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1362437. [PMID: 38524131 PMCID: PMC10957631 DOI: 10.3389/fimmu.2024.1362437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) poses a growing global burden, necessitating the discovery of reliable biomarkers for early diagnosis. The clinical significance of dysregulated expression of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in diagnosing IBD has not been well established. Thus, our study aimed to investigate the diagnostic value of lncRNAs and circRNAs for IBD based on currently available studies. Methods A comprehensive search was carried out in diverse electronic databases, such as PubMed, Embase, Scopus, Science Direct and Wiley Online Library to retrieve articles published until October 30, 2023. Stata 17.0 software was employed to determine pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), and area under the curve (AUC). Heterogeneity, subgroup analysis, and meta-regression were explored, and publication bias was assessed using Deeks' funnel plot. Fagan's nomogram and likelihood ratio scattergram were employed to evaluate the clinical validity. Result A total of 11 articles encompassing 21 studies which involved 1239 IBD patients and 985 healthy controls were investigated. The findings revealed lncRNAs exhibit high level of pooled sensitivity 0.94 (95% CI: 0.87-0.97) and specificity 0.99 (95% CI: 0.89-1.00), along with PLR, NLR, DOR, and AUC values of 64.25 (95% CI: 7.39-558.66), 0.06 (95% CI: 0.03-0.13), 1055.25 (95% CI: 70.61-15770.77), and 0.99 (95% CI: 0.97-0.99), respectively. Conversely, CircRNAs showed moderate accuracy in IBD diagnosis, with sensitivity of 0.68 (95% CI: 0.61-0.73), specificity of 0.73 (95% CI: 0.65-0.79), PLR of 2.47 (95% CI: 1.94-3.16), NLR of 0.45 (95% CI: 0.38-0.53), DOR of 5.54 (95% CI: 3.88-7.93), and AUC value of 0.75 (95% CI: 0.71-0.79). Moreover, findings from subgroup analysis depicted heightened diagnostic efficacy when employing lncRNA H19 and a large sample size (≥100), with notable efficacy in diagnosing both ulcerative colitis (UC) and Crohn's disease (CD). Conclusion LncRNAs exhibit high diagnostic accuracy in distinguishing patients with IBD from healthy controls signifying their possible use as potential biomarkers, while circRNAs showed moderate diagnostic accuracy. Nevertheless, to validate our findings and confirm the clinical utility of lncRNAs and circRNAs in IBD diagnosis, a large pool of prospective and multi-center studies should be undertaken. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023491840.
Collapse
Affiliation(s)
- Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zewudu Mulatie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Muluken Amare Wudu
- Department of Pediatric and Child Health Nursing, School of Nursing and Midwifery, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Saba Gebremichael
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihreteab Alebachew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
7
|
Garrido-Godino AI, Gupta I, Pelechano V, Navarro F. RNA Pol II Assembly Affects ncRNA Expression. Int J Mol Sci 2023; 25:507. [PMID: 38203678 PMCID: PMC10778713 DOI: 10.3390/ijms25010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
RNA pol II assembly occurs in the cytoplasm before translocation of the enzyme to the nucleus. Affecting this assembly influences mRNA transcription in the nucleus and mRNA decay in the cytoplasm. However, very little is known about the consequences on ncRNA synthesis. In this work, we show that impairment of RNA pol II assembly leads to a decrease in cryptic non-coding RNAs (preferentially CUTs and SUTs). This alteration is partially restored upon overcoming the assembly defect. Notably, this drop in ncRNAs is only partially dependent on the nuclear exosome, which suggests a major specific effect of enzyme assembly. Our data also point out a defect in transcription termination, which leads us to propose that CTD phosphatase Rtr1 could be involved in this process.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
8
|
Rocca R, Grillone K, Citriniti EL, Gualtieri G, Artese A, Tagliaferri P, Tassone P, Alcaro S. Targeting non-coding RNAs: Perspectives and challenges of in-silico approaches. Eur J Med Chem 2023; 261:115850. [PMID: 37839343 DOI: 10.1016/j.ejmech.2023.115850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
The growing information currently available on the central role of non-coding RNAs (ncRNAs) including microRNAs (miRNAS) and long non-coding RNAs (lncRNAs) for chronic and degenerative human diseases makes them attractive therapeutic targets. RNAs carry out different functional roles in human biology and are deeply deregulated in several diseases. So far, different attempts to therapeutically target the 3D RNA structures with small molecules have been reported. In this scenario, the development of computational tools suitable for describing RNA structures and their potential interactions with small molecules is gaining more and more interest. Here, we describe the most suitable strategies to study ncRNAs through computational tools. We focus on methods capable of predicting 2D and 3D ncRNA structures. Furthermore, we describe computational tools to identify, design and optimize small molecule ncRNA binders. This review aims to outline the state of the art and perspectives of computational methods for ncRNAs over the past decade.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Anna Artese
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy.
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
9
|
Mohammed EM. Circular RNA in Multiple Sclerosis: Pathogenicity and Potential Biomarker Development: A Systematic Review. Epigenet Insights 2023; 16:25168657231213195. [PMID: 38033465 PMCID: PMC10687999 DOI: 10.1177/25168657231213195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS that affects millions of people worldwide. The causes of the disease remain unknown despite extensive efforts to understand it. CircRNAs are a unique class of endogenous non-coding RNA that are abundant, stable, conserved, and specifically expressed molecules, making them a promising biomarker of diseases. This review investigates the role of circRNA in MS pathogenicity and their potential as a biomarker through a comprehensive literature search conducted in 8 scientific databases. The studies found that there are differentially expressed circRNAs in MS patients compared to healthy controls (HC), and this difference is even more pronounced in different MS subtypes. Enrichment of circRNAs in linkage disequilibrium (LD) blocks that harbor MS-associated SNPs suggests that these SNPs manipulate the levels of circRNAs in the surrounding area, contributing to disease pathogenicity. While circRNA shows promise as an indicator or biomarker for MS disease pathology, further research is needed to fully explore its potential and impact on human biology.
Collapse
Affiliation(s)
- Eiman M Mohammed
- Kuwait Cancer Control Centre, Medical Laboratory Department, Molecular Genetics Laboratory, Ministry of Health, Shuwaikh, Kuwait
| |
Collapse
|
10
|
Ruffo P, Catalano S, La Bella V, Conforti FL. Deregulation of Plasma microRNA Expression in a TARDBP-ALS Family. Biomolecules 2023; 13:biom13040706. [PMID: 37189452 DOI: 10.3390/biom13040706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
TDP-43 intracellular aggregates are a pathogenic sign of most amyotrophic lateral sclerosis (ALS) cases. Familial ALS, brought on by TARDBP gene mutations, emphasizes the relevance of this altered protein in pathophysiology. Growing evidence suggests a role for dysregulated microRNA (miRNA) in ALS disease. Furthermore, several studies showed that miRNAs are highly stable in various biological fluids (CSF, blood, plasma, and serum), and they are expressed differentially by comparing ALS patients and controls. In 2011, our research group discovered a rare mutation in a TARDBP gene (G376D) in a large ALS Apulian family with affected members exhibiting a rapidly progressing disease. To identify potential non-invasive biomarkers of preclinical and clinical progression in the TARDBP-ALS family, we assessed the expression levels of plasma microRNAs in affected patients (n = 7) and asymptomatic mutation carriers (n = 7) compared with healthy controls (n = 13). Applying qPCR, we investigate 10 miRNAs that bind TDP-43 in vitro during their biogenesis or in their mature form, and the other nine are known to be deregulated in the disease. We highlight the potential of miR-132-5p, miR-132-3p, miR-124-3p, and miR-133a-3p expression levels in plasma as biomarkers of preclinical progression for G376D-TARDBP-associated ALS. Our research strongly supports the potential of plasma miRNAs as biomarkers for performing predictive diagnostics and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
11
|
Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A, Matsuda S. CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders. Noncoding RNA 2023; 9:23. [PMID: 37104005 PMCID: PMC10142617 DOI: 10.3390/ncrna9020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood-brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Shanker OR, Kumar S, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Epigenetics of neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:165-184. [DOI: 10.1016/bs.pmbts.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
14
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
15
|
Tsitsipatis D, Mazan-Mamczarz K, Si Y, Herman AB, Yang JH, Guha A, Piao Y, Fan J, Martindale JL, Munk R, Yang X, De S, Singh BK, Ho R, Gorospe M, King PH. Transcriptomic analysis of human ALS skeletal muscle reveals a disease-specific pattern of dysregulated circRNAs. Aging (Albany NY) 2022; 14:9832-9859. [PMID: 36585921 PMCID: PMC9831722 DOI: 10.18632/aging.204450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ying Si
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abhishek Guha
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Brijesh K. Singh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 2022; 18:1243-1248. [PMID: 36453400 PMCID: PMC9838156 DOI: 10.4103/1673-5374.358615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy,Correspondence to: Francesca Luisa Conforti, .
| |
Collapse
|
17
|
miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers (Basel) 2022; 14:cancers14184345. [PMID: 36139505 PMCID: PMC9497224 DOI: 10.3390/cancers14184345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary ATPase family AAA domain-containing protein 2 (ATAD2) overexpression is associated with poor survival and disease recurrence in multiple cancers. The current study aimed to investigate the expression and function of ATAD2 in breast cancer. Our results showed that ATAD2 expression was upregulated in human breast cancer tissues and cell lines, while ATAD2 knockdown inhibited the proliferation, migration, and invasion of breast cancer cells. Moreover, we provide evidence suggesting that miR-302 directly targets ATAD2 and thus modulates cancer cell proliferation, migration, and invasion in vitro. Moreover, ATAD2 overexpression rescued the inhibition of tumor growth caused by miR-302 in xenograft mice. These findings indicate that miR-302 plays a crucial role in inhibiting the malignant phenotypes of breast cancer cells by targeting ATAD2. Abstract Breast cancer is the most common malignant tumor in women. The ATPase family AAA domain-containing protein 2 (ATAD2) contains an ATPase domain and a bromodomain, and is abnormally expressed in various human cancers, including breast cancer. However, the molecular mechanisms underlying the regulation of ATAD2 expression in breast cancer remain unclear. This study aimed to investigate the expression and function of ATAD2 in breast cancer. We found that ATAD2 was highly expressed in human breast cancer tissues and cell lines. ATAD2 depletion via RNA interference inhibited the proliferation, migration, and invasive ability of the SKBR3 and T47D breast cancer cell lines. Furthermore, Western blot analysis and luciferase assay results revealed that ATAD2 is a putative target of miR-302. Transfection with miR-302 mimics markedly reduced cell migration and invasion. These inhibitory effects of miR-302 were restored by ATAD2 overexpression. Moreover, miR-302 overexpression in SKBR3 and T47D cells suppressed tumor growth in the xenograft mouse model. However, ATAD2 overexpression rescued the decreased tumor growth seen after miR-302 overexpression. Our findings indicate that miR-302 plays a prominent role in inhibiting the cancer cell behavior associated with tumor progression by targeting ATAD2, and could thus be a valuable target for breast cancer therapy.
Collapse
|
18
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
19
|
The Advent of Omics Sciences in Clinical Trials of Motor Neuron Diseases. J Pers Med 2022; 12:jpm12050758. [PMID: 35629180 PMCID: PMC9144989 DOI: 10.3390/jpm12050758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The “omics revolution” has totally changed the scientific research approach and is contributing to the development of personalized therapies. In motor neuron diseases (MNDs), a set of complex, multifactorial, late-onset and chronic neurodegenerative diseases, the use of multi-omics approaches in clinical trials is providing new opportunities to stratify patients and develop target therapies. To show how omics science is gaining momentum in MNDs, in this work, we review the interventional clinical trials for MNDs based on the application of omics sciences. We analyze a total of 62 clinical trials listed in the ClinicalTrials database where different omics approaches have been applied in an initial phase, for diagnosis or patient selection, or in subsequent stages to cluster subjects, identify molecular signatures or evaluate drugs security or efficacy. The rise of omics sciences in clinical experimentation of MNDs is leading to an upheaval in their diagnosis and therapy that will require significant investments and means to ensure the correct and rapid evolution of personalized medicine.
Collapse
|
20
|
Ruffo P, Perrone B, Conforti FL. SOD-1 Variants in Amyotrophic Lateral Sclerosis: Systematic Re-Evaluation According to ACMG-AMP Guidelines. Genes (Basel) 2022; 13:genes13030537. [PMID: 35328090 PMCID: PMC8955492 DOI: 10.3390/genes13030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron disease whose causes are unclear. The first ALS gene associated with the autosomal dominant form of the disease was SOD1. This gene has a high rate of rare variants, and an appropriate classification is essential for a correct ALS diagnosis. In this study, we re-evaluated the classification of all previously reported SOD1 variants (n = 202) from ALSoD, project MinE, and in-house databases by applying the ACMG-AMP criteria to ALS. New bioinformatics analysis, frequency rating, and a thorough search for functional studies were performed. We also proposed adjusting criteria strength describing how to apply them to SOD1 variants. Most of the previously reported variants have been reclassified as likely pathogenic and pathogenic based on the modified weight of the PS3 criterion, highlighting how in vivo or in vitro functional studies are determining their interpretation and classification. Furthermore, this study reveals the concordance and discordance of annotations between open databases, indicating the need for expert review to adapt the study of variants to a specific disease. Indeed, in complex diseases, such as ALS, the oligogenic inheritance, the presence of genes that act as risk factors and the reduced penetration must be considered. Overall, the diagnosis of ALS remains clinical, and improving variant classification could support genetic data as diagnostic criteria.
Collapse
|