1
|
Yu X, Zhang X, Bilal H, Shi C, Sun L. Exploring potential biomarkers for acute myocardial infarction by combining circadian rhythm gene expression and immune cell infiltration. Sci Rep 2025; 15:4012. [PMID: 39893248 PMCID: PMC11787365 DOI: 10.1038/s41598-025-88568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Current diagnostic biomarkers for acute myocardial infarction (AMI), such as troponins, often lack specificity, leading to false positives under non-cardiac conditions. Recent studies have implicated circadian rhythm and immune infiltration in the pathogenesis of AMI. This study hypothesizes that analyzing the interplay between circadian rhythm-related gene expression and immune infiltration identify highly specific diagnostic biomarkers for AMI. Our results demonstrated differential expression of 15 circadian rhythm-related genes (CRGs) between AMI patients and healthy individuals, with five key genes-JUN, NAMPT, S100A8, SERPINA1, and VCAN identified as key contributors to this process. Functional enrichment analyses suggest these genes significantly influence cytokine and chemokine production in immune responses. Immune infiltration assessments using ssGSEA indicated elevated levels of neutrophils, macrophages, and eosinophils in AMI patients. Additionally, we identified potential therapeutic implications with 13 pivotal miRNAs and 10 candidate drugs targeting these genes. The Benjamini-Hochberg method was employed to adjust for multiple testing, and the results retained statistical significance. RT-qPCR analysis further confirmed the upregulation of these five genes under hypoxic conditions, compared to controls. Collectively, our findings highlight the critical role of CRGs in AMI, providing a foundation for improved diagnostic approaches and novel therapeutic targets.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaopeng Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hazrat Bilal
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chang Shi
- Department of Pathology, First Affiliated Hospital, Dalian, Liaoning Province, China.
| | - Lei Sun
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Bartoszewska E, Florek K, Zagórski K, Gachowska M, Wietrzyk A, Hutny A, Nowakowska-Toporowska A, Kulbacka J. Methuosis, Alkaliptosis, and Oxeiptosis and Their Significance in Anticancer Therapy. Cells 2024; 13:2095. [PMID: 39768186 PMCID: PMC11674267 DOI: 10.3390/cells13242095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding morphological, biochemical, and functional aspects of cell death is essential for targeting new cancer therapies. Even though many different mechanisms of cell death are identified, it is crucial to highlight the role of new and lesser-known pathways, including methuosis, alkaliptosis, and oxeiptosis. The aim of this review was to summarize the data about cell death mechanisms-methuosis, alkaliptosis, and oxeiptosis-and their role in cancer treatment. Unique molecular mechanisms and cellular outcomes characterize each of these forms of cell death. This research on methuosis, alkaliptosis, and oxeiptosis provides a better understating of cell death biology and creates novel opportunities for neoplasm management.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Kamila Florek
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karol Zagórski
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Wietrzyk
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Agata Hutny
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (E.B.); (K.F.); (K.Z.); (M.G.); (A.W.); (A.H.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškiu˛ g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
3
|
Shen Y, Liang Y, Yuan Z, Qiao L, Liu J, Pan Y, Yang K, Liu W. circARID1A Inhibits Tail Fat Cell Differentiation in Guangling Large-Tailed Sheep by Regulating the miR-493-3p/YTHDF2 Axis. Int J Mol Sci 2024; 25:12351. [PMID: 39596416 PMCID: PMC11594833 DOI: 10.3390/ijms252212351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The Guangling Large-Tailed sheep is renowned for its unique tail fat deposition, with a significant proportion of its total body fat being localized in the tail region. Fat deposition is a complex biological process regulated by various molecular mechanisms. Our previous studies have identified a large number of differentially expressed circular RNAs (circRNAs) in the tail adipose tissue of the Guangling Large-Tailed sheep. These circRNAs may play a pivotal role in the process of fat deposition. Given the potential regulatory functions of circRNAs in adipose metabolism, investigating their roles in tail fat deposition is of significant scientific importance. In this study, we identified novel circARID1A. Using various experimental methods, including lentivirus infection, RNase R treatment, actinomycin D assay, qPCR, western blotting, and dual-luciferase reporter assays, we determined that circARID1A inhibits the expression of miR-493-3p through competitive binding, thereby regulating adipocyte differentiation. Further research revealed that miR-493-3p promotes adipocyte differentiation by targeting YTH domain family 2 (YTHDF2), and this regulatory effect is also influenced by circARID1A. In conclusion, our findings suggest that circARID1A inhibits tail fat cell differentiation in the Guangling Large-Tailed sheep through the circARID1A/miR-493-3p/YTHDF2 axis, providing theoretical support for improving meat quality and fat deposition in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Cheng X, Wu C, Xu H, Zou R, Li T, Ye S. miR-557 inhibits hepatocellular carcinoma progression through Wnt/β-catenin signaling pathway by targeting RAB10. Aging (Albany NY) 2024; 16:3716-3733. [PMID: 38364252 PMCID: PMC10929814 DOI: 10.18632/aging.205554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 02/18/2024]
Abstract
Accumulating evidence suggests that aberrant miRNAs participate in carcinogenesis and progression of hepatocellular carcinoma (HCC). Abnormal miR-557 expression is reported to interfere with the progression of several human cancers. However, the potential roles of miR-557 in HCC remain largely unknown. In the current study, we found that miR-557 was down-regulated in HCC tissues and cell lines, and was closely related to recurrence and metastasis of HCC. Notably, overexpression of miR-557 inhibited proliferation, migration, invasion, epithelial-to-mesenchymal transition (EMT) progression, blocked cells in G0/G1 phase of MHCC-97H cells in vitro, and suppressed tumor growth in vivo. However, loss of miR-557 facilitated these parameters in Huh7 cells both in vitro and in vivo. Moreover, RAB10 was identified as a direct downstream target of miR-557 through its 3'-UTR. Furthermore, RAB10 re-expression or knockdown partially abolished the effects of miR-557 on proliferation, migration, invasion, and EMT progression of HCC cells. Mechanistically, overexpression of miR-557 suppressed Wnt/β-catenin signaling by inhibiting GSK-3β phosphorylation, increasing β-catenin phosphorylation, and decreasing β-catenin transport to the nucleus, while knockdown of miR-557 activated Wnt/β-catenin signaling. Moreover, the TOP/FOP-Flash reporter assays showed that miR-557 overexpression or knockdown significantly suppressed or activated Wnt signaling activity, respectively. Additionally, low expression of miR-557 and high expression of RAB10 in HCC tissues was closely associated with tumor size, degree of differentiation, TNM stage and poor prognosis in HCC patients. Taken together, these results demonstrate that miR-557 blocks the progression of HCC via the Wnt/β-catenin pathway by targeting RAB10.
Collapse
Affiliation(s)
- Xiaoye Cheng
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Can Wu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Haocheng Xu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ruixiang Zou
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shanping Ye
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Zhu D, Qi H, Zhu H. hsa-miR-199b-3p suppresses osteosarcoma progression by targeting CCDC88A, inhibiting epithelial-to-mesenchymal transition, and Wnt/beta-catenin signaling pathway. Sci Rep 2023; 13:12544. [PMID: 37532779 PMCID: PMC10397339 DOI: 10.1038/s41598-023-39537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
The present study investigated microRNA (miR)-199b-3p expression in osteosarcoma (OS) and aimed to identify its potential mechanism of action contributing to the development of this disease. Firstly, miR-199b-3p and coiled-coil domain containing 88A (CCDC88A) expression data were evaluated from Gene Expression Profiling Interactive Analysis and Kaplan Meier plotter was used to assess the survival data. By analyzing the GSE65071 dataset from gene expression omnibus, it was found that miR-199b-3p was expressed at a low level. By using reverse transcription-quantitative PCR analysis in OS cells and tissues, CCDC88A was found to be expressed at a high level. Moreover, TargetScan predicted CCDC88A to be a downstream target of miR-199b-3p. Luciferase reporter assays were used to verify this prediction. In vitro overexpression of miR-199b-3p decreased the invasive and proliferative activity of OS cells. Mechanistic studies indicated that decreased miR-199b-3p resulted in increased expression of CCDC88A. Concomitantly, it impeded the Wnt/beta-catenin pathway and the epithelial-to-mesenchymal transition process. Overall, the results of the present study emphasized the pivotal role of the miR-199b-3p in the formation and progression of OS, suggesting that it could be used as a potential tumor biomarker.
Collapse
Affiliation(s)
- Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, 182 Tongguan North Road, Lianyungang, 222000, Jiangsu, People's Republic of China.
| | - Han Qi
- Department of Emergency Surgery, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, 222000, Jiangsu, People's Republic of China.
| | - Hongqi Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, 182 Tongguan North Road, Lianyungang, 222000, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|