1
|
Sun T, Han Y, Li JL, Wang S, Jing ZJ, Yan Z, Zhou L, Zuo L, Yang JL, Cao JM. Synaptotagmin-7 mediates cardiac hypertrophy by targeting autophagy. FEBS J 2024; 291:489-509. [PMID: 37724442 DOI: 10.1111/febs.16961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Sustained cardiac hypertrophy damages the heart and weakens cardiac function, often leading to heart failure and even death. Pathological cardiac hypertrophy has become a central therapeutic target for many heart diseases including heart failure. However, the underlying mechanisms of cardiac hypertrophy, especially the involvement of autophagy program, are still ill-understood. Synaptotagmin-7 (Syt7), a multifunctional and high-affinity calcium sensor, plays a pivotal role in asynchronous neurotransmitter release, synaptic facilitation, and vesicle pool regulation during synaptic transmission. However, little is known about whether Syt7 is expressed in the myocardium and involved in the pathogenesis of heart diseases. Here we showed that Syt7 was significantly upregulated in Ang II-treated hearts and cardiomyocytes. Homozygous syt7 knockout (syt7-/-) mice exhibited significantly attenuated cardiac hypertrophy and fibrosis and improved cardiac function. We further found that Syt7 exerted a pro-hypertrophic effect by suppressing the autophagy process. In exploring the upstream mechanisms, microRNA (miR)-93 was identified to participate in the regulation of Syt7 expression. miR-93 protected hearts against Ang II-induced hypertrophy through targeting Syt7-autophagy pathway. In summary, our data reveal a new cardiac hypertrophy regulator and a novel hypertrophy regulating model composed of miR-93, Syt7 and autophagy program. These molecules may serve as potential therapeutic targets in the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Han
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Shuang Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhi-Jie Jing
- Laboratory Animal Research Center of Shanxi Medical University, Taiyuan, China
| | - Zi Yan
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lin Zuo
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jun-Li Yang
- Computer Teaching Department, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Das AC, Foroutan A, Qian B, Hosseini Naghavi N, Shabani K, Shooshtari P. Single-Cell Chromatin Accessibility Data Combined with GWAS Improves Detection of Relevant Cell Types in 59 Complex Phenotypes. Int J Mol Sci 2022; 23:11456. [PMID: 36232752 PMCID: PMC9570273 DOI: 10.3390/ijms231911456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Several disease risk variants reside on non-coding regions of DNA, particularly in open chromatin regions of specific cell types. Identifying the cell types relevant to complex traits through the integration of chromatin accessibility data and genome-wide association studies (GWAS) data can help to elucidate the mechanisms of these traits. In this study, we created a collection of associations between the combinations of chromatin accessibility data (bulk and single-cell) with an array of 201 complex phenotypes. We integrated the GWAS data of these 201 phenotypes with bulk chromatin accessibility data from 137 cell types measured by DNase-I hypersensitive sequencing and found significant results (FDR adjusted p-value ≤ 0.05) for at least one cell type in 21 complex phenotypes, such as atopic dermatitis, Graves' disease, and body mass index. With the integration of single-cell chromatin accessibility data measured by an assay for transposase-accessible chromatin with high-throughput sequencing (scATAC-seq), taken from 111 adult and 111 fetal cell types, the resolution of association was magnified, enabling the identification of further cell types. This resulted in the identification of significant correlations (FDR adjusted p-value ≤ 0.05) between 15 categories of single-cell subtypes and 59 phenotypes ranging from autoimmune diseases like Graves' disease to cardiovascular traits like diastolic/systolic blood pressure.
Collapse
Affiliation(s)
- Akash Chandra Das
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Brian Qian
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Nader Hosseini Naghavi
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
| | - Kayvan Shabani
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
| | - Parisa Shooshtari
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|