1
|
Akbar S, Raza A, Awan HH, Zou Q, Alghamdi W, Saeed A. pNPs-CapsNet: Predicting Neuropeptides Using Protein Language Models and FastText Encoding-Based Weighted Multi-View Feature Integration with Deep Capsule Neural Network. ACS OMEGA 2025; 10:12403-12416. [PMID: 40191328 PMCID: PMC11966582 DOI: 10.1021/acsomega.4c11449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/04/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
Neuropeptides (NPs) are critical signaling molecules that are essential in numerous physiological processes and possess significant therapeutic potential. Computational prediction of NPs has emerged as a promising alternative to traditional experimental methods, often labor-intensive, time-consuming, and expensive. Recent advancements in computational peptide models provide a cost-effective approach to identifying NPs, characterized by high selectivity toward target cells and minimal side effects. In this study, we propose a novel deep capsule neural network-based computational model, namely pNPs-CapsNet, to predict NPs and non-NPs accurately. Input samples are numerically encoded using pretrained protein language models, including ESM, ProtBERT-BFD, and ProtT5, to extract attention mechanism-based contextual and semantic features. A differential evolution-based weighted feature integration method is utilized to construct a multiview vector. Additionally, a two-tier feature selection strategy, comprising MRMD and SHAP analysis, is developed to identify and select optimal features. Finally, the novel capsule neural network (CapsNet) is trained using the selected optimal feature set. The proposed pNPs-CapsNet model achieved a remarkable predictive accuracy of 98.10% and an AUC of 0.98. To validate the generalization capability of the pNPs-CapsNet model, independent samples reported an accuracy of 95.21% and an AUC of 0.96. The pNPs-CapsNet model outperforms existing state-of-the-art models, demonstrating 4% and 2.5% improved predictive accuracy for training and independent data sets, respectively. The demonstrated efficacy and consistency of pNPs-CapsNet underline its potential as a valuable and robust tool for advancing drug discovery and academic research.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
- Department
of Computer Science, Abdul Wali Khan University
Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Ali Raza
- Department
of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Hamid Hussain Awan
- Department
of Computer Science, Rawalpindi Women University, Rawalpindi 46300, Punjab, Pakistan
| | - Quan Zou
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze
Delta Region Institute (Quzhou), University
of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Wajdi Alghamdi
- Department
of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Saeed
- Department
of Computer Science and IT, University of
Engineering and Technology, Jalozai Campus, Peshawar 25000, Pakistan
| |
Collapse
|
2
|
Akbar S, Ullah M, Raza A, Zou Q, Alghamdi W. DeepAIPs-Pred: Predicting Anti-Inflammatory Peptides Using Local Evolutionary Transformation Images and Structural Embedding-Based Optimal Descriptors with Self-Normalized BiTCNs. J Chem Inf Model 2024; 64:9609-9625. [PMID: 39625463 DOI: 10.1021/acs.jcim.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Inflammation is a biological response to harmful stimuli, playing a crucial role in facilitating tissue repair by eradicating pathogenic microorganisms. However, when inflammation becomes chronic, it leads to numerous serious disorders, particularly in autoimmune diseases. Anti-inflammatory peptides (AIPs) have emerged as promising therapeutic agents due to their high specificity, potency, and low toxicity. However, identifying AIPs using traditional in vivo methods is time-consuming and expensive. Recent advancements in computational-based intelligent models for peptides have offered a cost-effective alternative for identifying various inflammatory diseases, owing to their selectivity toward targeted cells with low side effects. In this paper, we propose a novel computational model, namely, DeepAIPs-Pred, for the accurate prediction of AIP sequences. The training samples are represented using LBP-PSSM- and LBP-SMR-based evolutionary image transformation methods. Additionally, to capture contextual semantic features, we employed attention-based ProtBERT-BFD embedding and QLC for structural features. Furthermore, differential evolution (DE)-based weighted feature integration is utilized to produce a multiview feature vector. The SMOTE-Tomek Links are introduced to address the class imbalance problem, and a two-layer feature selection technique is proposed to reduce and select the optimal features. Finally, the novel self-normalized bidirectional temporal convolutional networks (SnBiTCN) are trained using optimal features, achieving a significant predictive accuracy of 94.92% and an AUC of 0.97. The generalization of our proposed model is validated using two independent datasets, demonstrating higher performance with the improvement of ∼2 and ∼10% of accuracies than the existing state-of-the-art model using Ind-I and Ind-II, respectively. The efficacy and reliability of DeepAIPs-Pred highlight its potential as a valuable and promising tool for drug development and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Le VT, Tseng YH, Liu YC, Malik MS, Ou YY. VesiMCNN: Using pre-trained protein language models and multiple window scanning convolutional neural networks to identify vesicular transport proteins. Int J Biol Macromol 2024; 280:136048. [PMID: 39332561 DOI: 10.1016/j.ijbiomac.2024.136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Vesicular transport is a critical cellular process responsible for the proper organization and functioning of eukaryotic cells. This mechanism relies on specialized vesicles that shuttle macromolecules, such as proteins, across the cellular landscape, a process pivotal to maintaining cellular homeostasis. Disruptions in vesicular transport have been linked to various disease mechanisms, including cancer and neurodegenerative disorders. In this study, we present vesiMCNN, a novel computational approach that integrates pre-trained protein language models with a multi-window scanning convolutional neural network architecture to accurately identify vesicular transport proteins. To the best of our knowledge, this is the first study to leverage the power of pre-trained language models in combination with the multi-window scanning technique for this task. Our method achieved a Matthews Correlation Coefficient (MCC) of 0.558 and an Area Under the Receiver Operating Characteristic (AUC-ROC) of 0.933, outperforming existing state-of-the-art approaches. Additionally, we have curated a comprehensive benchmark dataset for the study of vesicular transport proteins, which can facilitate further research in this field. The remarkable performance of our model, combined with the comprehensive dataset and novel deep learning model, marks a significant advancement in the field of vesicular transport protein research.
Collapse
Affiliation(s)
- Van The Le
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Yi-Hsuan Tseng
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Yu-Chen Liu
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan
| | - Muhammad Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan; Department of Computer Sciences, Karakoram International University, Gilgit, -Baltistan, 15100, Pakistan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
4
|
Fan R, Ding Y, Zou Q, Yuan L. Multi-view local hyperplane nearest neighbor model based on independence criterion for identifying vesicular transport proteins. Int J Biol Macromol 2023; 247:125774. [PMID: 37437677 DOI: 10.1016/j.ijbiomac.2023.125774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Vesicular transport proteins participate in various biological processes and play a significant role in the movement of substances within cells. These proteins are associated with numerous human diseases, making their identification particularly important. In this study, we developed a novel strategy for accurately identifying vesicular transport proteins. We developed a novel multi-view classifier called graph-regularized k-local hyperplane distance nearest neighbor model (HSIC-GHKNN), which combines the Hilbert-Schmidt independence criterion (HSIC)-based multi-view learning method with a local hyperplane distance nearest-neighbor classifier. We first extracted protein evolution information using two feature extraction methods, pseudo-position-specific scoring matrix (PsePSSM) and AATP, and addressed dataset imbalance using the Edited Nearest Neighbors (ENN) algorithm. Subsequently, we employed a local hyperplane distance nearest-neighbor classifier for each view identification and added an HSIC term to maintain independence between views. We then assessed the performance of our identification strategy and analyzed the PsePSSM and AATP feature sets to determine the influencing factors of the classification results. The experimental results demonstrate that the accurate and Matthew correlation coefficients of our strategy on the independent test set are 85.8 % and 0.548, respectively. Our approach outperformed existing methods in most evaluation metrics. In addition, the proposed multi-view classification model can easily be applied to similar identification tasks.
Collapse
Affiliation(s)
- Rui Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China.
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
5
|
Chen Y, Gao L, Zhang T. Stack-VTP: prediction of vesicle transport proteins based on stacked ensemble classifier and evolutionary information. BMC Bioinformatics 2023; 24:137. [PMID: 37029385 PMCID: PMC10080812 DOI: 10.1186/s12859-023-05257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Vesicle transport proteins not only play an important role in the transmembrane transport of molecules, but also have a place in the field of biomedicine, so the identification of vesicle transport proteins is particularly important. We propose a method based on ensemble learning and evolutionary information to identify vesicle transport proteins. Firstly, we preprocess the imbalanced dataset by random undersampling. Secondly, we extract position-specific scoring matrix (PSSM) from protein sequences, and then further extract AADP-PSSM and RPSSM features from PSSM, and use the Max-Relevance-Max-Distance (MRMD) algorithm to select the optimal feature subset. Finally, the optimal feature subset is fed into the stacked classifier for vesicle transport proteins identification. The experimental results show that the of accuracy (ACC), sensitivity (SN) and specificity (SP) of our method on the independent testing set are 82.53%, 0.774 and 0.836, respectively. The SN, SP and ACC of our proposed method are 0.013, 0.007 and 0.76% higher than the current state-of-the-art methods.
Collapse
Affiliation(s)
- Yu Chen
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lixin Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
6
|
Wu L, Gao S, Yao S, Wu F, Li J, Dong Y, Zhang Y. Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM. Front Genet 2022; 13:912614. [PMID: 35783287 PMCID: PMC9240597 DOI: 10.3389/fgene.2022.912614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the subcellular localization of a given protein is an essential part of biological and medical research, since the protein must be localized in the correct organelle to ensure physiological function. Conventional biological experiments for protein subcellular localization have some limitations, such as high cost and low efficiency, thus massive computational methods are proposed to solve these problems. However, some of these methods need to be improved further for protein subcellular localization with class imbalance problem. We propose a new model, generating minority samples for protein subcellular localization (Gm-PLoc), to predict the subcellular localization of multi-label proteins. This model includes three steps: using the position specific scoring matrix to extract distinguishable features of proteins; synthesizing samples of the minority category to balance the distribution of categories based on the revised generative adversarial networks; training a classifier with the rebalanced dataset to predict the subcellular localization of multi-label proteins. One benchmark dataset is selected to evaluate the performance of the presented model, and the experimental results demonstrate that Gm-PLoc performs well for the multi-label protein subcellular localization.
Collapse
Affiliation(s)
- Liwen Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Song Gao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Shaowen Yao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Feng Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Jie Li
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunyun Dong
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunqi Zhang
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Statistical Modeling and Data Analysis, School of Mathematics and Statistics, Yunnan University, Kunming, China
- *Correspondence: Yunqi Zhang,
| |
Collapse
|