1
|
Song P, Li Y, Wang X, Wang X, Zhang A, Wang Z, Zhao W, Li H, Zhao H, Song K, Xing Y, Guo X, Zhang X, Sun S, Feng Y, Sun D. Exploration of Genomic Regions Associated with Fusarium Head Blight Resistance in Wheat and Development and Validation of Kompetitive Allele-Specific Polymerase Chain Reaction Markers. Int J Mol Sci 2025; 26:3339. [PMID: 40244225 PMCID: PMC11989977 DOI: 10.3390/ijms26073339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a globally significant disease that severely impacts the yield and quality of wheat. Breeding resistant wheat varieties using resistance genes is the most cost-effective strategy for managing FHB, but few markers are available for marker-assisted selection (MAS) of resistance. In this study, we evaluated the resistance of a recombinant inbred line (RIL) population to FHB through single-floret inoculation in four field environments over two years. Combined with quantitative trait loci (QTL) detection through high-density genetic mapping based on wheat 50 K SNP arrays, we identified a total of 21 QTLs influencing FHB resistance. It is worth noting that QFhba-5D.2-1 was detected in two field environments as well as in the multi-environment trial (MET) analysis, explaining phenotypic variation ranging from 1.98% to 18.55%. We also pinpointed thirteen resistance genes within the QTL intervals on chromosomes 4A, 5D, 6B, and 7A associated with FHB defense mechanisms. Furthermore, we developed two Kompetitive Allele-Specific PCR (KASP) markers for the QFhba-5D.2-1 and QFhba-7A regions to validate their specificity within the RIL population. Subsequently, we validated the polymorphism of these two markers in 305 wheat germplasms and analyzed their effect on thousand kernel weight (TKW) and spike length (SL). These markers will accelerate the development of FHB-resistant wheat varieties through MAS, significantly reducing yield losses and strengthening food security.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xin Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441000, China
| | - Xiaoxiao Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Zitan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Haoyang Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xiaoran Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xin Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Shengjie Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| |
Collapse
|
2
|
Zhang M, Jiang P, Wu Q, Han X, Man J, Sun J, Liang J, Chen J, Zhao Q, Guo Y, An Y, Jia H, Li S, Xu Y. Identification of candidate genes for Fusarium head blight resistance from QTLs using RIL population in wheat. PLANT MOLECULAR BIOLOGY 2024; 114:62. [PMID: 38771394 DOI: 10.1007/s11103-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Nanjing, 210095, China
| | - Qun Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xu Han
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junxia Man
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junsheng Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinlong Liang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchuan Chen
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qi Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Guo
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanrong An
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyan Jia
- Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sishen Li
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
4
|
Wang Y, Zeng Z, Li J, Zhao D, Zhao Y, Peng C, Lan C, Wang C. Identification and validation of new quantitative trait loci for spike-related traits in two RIL populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:64. [PMID: 37533603 PMCID: PMC10390419 DOI: 10.1007/s11032-023-01401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops for ensuring food security worldwide. Identification of major quantitative trait loci (QTL) for spike-related traits is important for improvement of yield potential in wheat breeding. In this study, by using the wheat 55K single nucleotide polymorphism (SNP) array and diversity array technology (DArT), two recombinant inbred line populations derived from crosses avocet/chilero and avocet/huites were used to map QTL for kernel number per spike (KNS), total spikelet number per spike (TSS), fertile spikelet number per spike (FSS), and spike compactness (SC). Forty-two QTLs were identified on chromosomes 2A (4), 2B (3), 3A (2), 3B (7), 5A (11), 6A (4), 6B, and 7A (10), explaining 3.13-21.80% of the phenotypic variances. Twelve QTLs were detected in multi-environments on chromosomes 2A, 3B (2), 5A (4), 6A (3), 6B, and 7A, while four QTL clusters were detected on chromosomes 3A, 3B, 5A, and 7A. Two stable and new QTL clusters, QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A, were detected in the physical intervals of 547.49-590.46 Mb and 511.54-516.15 Mb, accounting for 7.53-14.78% and 7.01-20.66% of the phenotypic variances, respectively. High-confidence annotated genes for QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A were more highly expressed in spike development. The results provide new QTL and molecular markers for marker-assisted breeding in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01401-4.
Collapse
Affiliation(s)
- Yuying Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Zhankui Zeng
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Jiachuang Li
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Dehui Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Yue Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Chen Peng
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chunping Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| |
Collapse
|