Liu Y, Li W, Yekefenhazi D, Yang X, Zhu Q, Ye K, Han F, Xu D. Genome Insights and Identification of Sex Determination Region and Sex Markers in
Argyrosomus japonicus.
Genes (Basel) 2024;
15:1493. [PMID:
39766761 PMCID:
PMC11675234 DOI:
10.3390/genes15121493]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND
Argyrosomus japonicus, a member of the Sciaenidae family, is widely distributed across the sea areas near China, Japan, Australia, and South Africa. The aim of this study is to provide a high-quality genome with new technology and to understand the sex determination mechanism of this species.
METHODS
We generated a high-quality chromosome-level genome for Argyrosomus japonicus using PacBio HiFi and Hi-C sequencing technologies. To map the sex determination region, we employed re-sequencing data from 38 A. japonicus and conducted genome-wide association studies (GWASs) on sex phenotypes.
RESULTS
Utilizing Hifiasm, we assembled a 708.8 Mb genome with a contig N50 length of 30 Mb. Based on Hi-C data, these contigs were organized into 24 chromosomes. The completeness of the assembly was assessed to be 99% using BUSCO, and over 98% according to Merqury. We identified a total of 174.57 Mb of repetitive elements and annotated 24,726 protein-coding genes in the genome. We mapped a 2.8 Mb sex determination region on chromosome 9, within which we found two sex-linked markers. Furthermore, we confirmed that the XX-XY sex determination system is adopted in A. japonicus.
CONCLUSIONS
The findings of this study provide significant insights into genetic breeding, genome evolution research, and sex control breeding in A. japonicus.
Collapse