1
|
Duan Y, Cao Q. Systematic revelation and meditation on the significance of long exons using representative eukaryotic genomes. BMC Genomics 2025; 26:290. [PMID: 40128699 PMCID: PMC11931755 DOI: 10.1186/s12864-025-11504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Long exons/introns are not evenly distributed in the genome, but the biological significance of this phenomenon remains elusive. MATERIALS AND METHODS Exon properties were analyzed in seven well-annotated reference genomes, including human and other representative model organisms: mouse, fruitfly, worm, mouse-ear cress, corn, and rice. RESULTS In all species, last exons in genes tend to be the longest. Additionally, we found that (1) canonical splicing motifs are strongly underrepresented in 3'UTR; (2) Last exons tend to have low GC content; (3) Comparing with other species, first exons in D. melanogaster genes demonstrate lower GC content than internal exons. CONCLUSIONS It cannot be excluded that last exons of genes exert essential regulatory roles and is subjected to natural selection, exhibiting differential splicing tendency, and GC content compared to other parts of the gene body.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qi Cao
- Health Science Center, International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Wang H, Yu J, Zhang X, Zeng Q, Zeng T, Gu L, Zhu B, Yu F, Du X. Genome-Wide Identification and Analysis of Phospholipase C Gene Family Reveals Orthologs, Co-Expression Networks, and Expression Profiling Under Abiotic Stress in Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:2976. [PMID: 39519895 PMCID: PMC11547881 DOI: 10.3390/plants13212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Phospholipase C (PLC) is an essential enzyme involved in lipid signaling pathways crucial for regulating plant growth and responding to environmental stress. In sorghum, 11 PLC genes have been identified, comprising 6 PI-PLCs and 5 NPCs. Through phylogenetic and interspecies collinearity analyses, structural similarities between SbPLCs and ZmPLCs proteins have been observed, with a particularly strong collinearity between SbPLCs and OsPLCs. Promoter function analysis has shown that SbPLCs are significantly enriched under abiotic stress and hormonal stimuli, like ABA, jasmonic acid, drought, high temperature, and salt. Gene co-expression networks, constructed using a weighted gene co-expression network analysis (WGCNA), highlight distinct expression patterns of SbPLC1, SbPLC3a, and SbPLC4 in response to abiotic stress, providing further insights into the expression patterns and interactions of SbPLCs under various environmental stimuli. qRT-PCR results reveal variations in expression levels among most SbPLCs members under different stress conditions (drought, NaCl, NaHCO3), hormone treatments (ABA), and developmental stages, indicating both specific and overlapping expression patterns. This comprehensive analysis offers valuable insights into the roles of SbPLCs in sorghum, shedding light on their specific expression patterns, regulatory elements, and protein interactions across different environmental stimuli and developmental stages.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xingyu Zhang
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China;
| | - Qian Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Feng Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| |
Collapse
|
3
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
4
|
Dvorak P, Hlavac V, Hanicinec V, Rao BH, Soucek P. Genes divided according to the relative position of the longest intron show increased representation in different KEGG pathways. BMC Genomics 2024; 25:649. [PMID: 38943073 PMCID: PMC11214234 DOI: 10.1186/s12864-024-10558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/24/2024] [Indexed: 07/01/2024] Open
Abstract
Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic.
- Institute of Medical Genetics, University Hospital Pilsen, Dr. Edvarda Benese 13, 30599, Pilsen, Czech Republic.
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 10042, Prague, Czech Republic
| | - Vojtech Hanicinec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Bhavana Hemantha Rao
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 10042, Prague, Czech Republic
| |
Collapse
|
5
|
Farris J, Khanna C, Smadbeck JB, Johnson SH, Bothun E, Kaplan T, Hoffman F, Polonis K, Oliver G, Reis LM, Semina EV, Rust L, Hoppman NL, Vasmatzis G, Marcou CA, Schimmenti LA, Klee EW. Complex balanced intrachromosomal rearrangement involving PITX2 identified as a cause of Axenfeld-Rieger Syndrome. Am J Med Genet A 2024; 194:e63542. [PMID: 38234180 PMCID: PMC11003841 DOI: 10.1002/ajmg.a.63542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.
Collapse
Affiliation(s)
- Joseph Farris
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl Khanna
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - James B Smadbeck
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah H Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erick Bothun
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tyler Kaplan
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis Hoffman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katarzyna Polonis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gavin Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laura Rust
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole L Hoppman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Cherisse A Marcou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|