1
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
2
|
Mannan A, Mohan M, Singh TG. Revenge unraveling the fortress: Exploring anticancer drug resistance mechanisms in BC for enhanced therapeutic strategies. Crit Rev Oncol Hematol 2025; 210:104707. [PMID: 40122355 DOI: 10.1016/j.critrevonc.2025.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Breast cancer (BC) is the most prevalent form of cancer in women worldwide and the main cause of cancer-related fatalities in females. BC can be classified into various types based on where cancer has begun to grow or spread, specific characteristics that influence how cancer behaves, and treatment choices. BC is multifaceted, and due to its diverse nature, the mechanisms involved are complex and have not yet been understood. Overexpression and expression of various factors involved in the functioning of mechanisms lead to abnormal changes, providing an environment supporting cancer cell growth. Understanding BC risk factors and early diagnosis through screening techniques like mammography and diagnostic techniques such as imaging and biopsies has advanced significantly. A wide range of treatment options, including surgery, radiation, chemotherapy, targeted treatments, and hormonal therapies, are now available. Daily advancements are being made in the clinical treatment of BC. Still, BC drug resistance cases remain highly prevalent and are currently one of the biggest problems faced by medical science. To increase response rates and possibly lengthen survival, there is a critical requirement for novel medicines with minimal sensitivity to overcome drug resistance. This review classifies different mechanisms that are involved in the development of BC and workable pharmacological targets and explains how they relate to the development of BC drug resistance. By concentrating on the mechanisms covered in this review, we can have a deep understanding of different mechanisms and learn innovative ways to develop novel therapeutics for the disease to combat medication resistance.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Suraweera A, O'Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev 2025; 44:37. [PMID: 40011240 PMCID: PMC11865116 DOI: 10.1007/s10555-025-10253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
4
|
Tahghighi A, Seyedhashemi E, Mohammadi J, Moradi A, Esmaeili A, Pornour M, Jafarifar K, Ganji SM. Epigenetic marvels: exploring the landscape of colorectal cancer treatment through cutting-edge epigenetic-based drug strategies. Clin Epigenetics 2025; 17:34. [PMID: 39987205 PMCID: PMC11847397 DOI: 10.1186/s13148-025-01844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). The difference between epigenetic changes and genetic mutations is that the former could be reversed or prevented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy and combination with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Javad Mohammadi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Arash Moradi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Aria Esmaeili
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kimia Jafarifar
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shahla Mohammad Ganji
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
5
|
Louwagie A, Vu LP. Emerging interactions between RNA methylation and chromatin architecture. Curr Opin Genet Dev 2024; 89:102270. [PMID: 39426116 DOI: 10.1016/j.gde.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Epitranscriptomics, the study of chemical modifications of RNA molecules, is increasingly recognized as an important component of gene expression regulation. While the majority of research has focused on N6-methyladenosine (m6A) RNA methylation on mRNAs, emerging evidence has revealed that the m6A modification extends beyond mRNAs to include chromatin-associated RNAs (caRNAs). CaRNAs constitute an important class of RNAs characterized by their interaction with the genome and epigenome. These features allow caRNAs to be actively involved in shaping genome organization. In this review, we bring into focus recent findings of the dynamic interactions between caRNAs and chromatin architecture and how RNA methylation impacts caRNAs' function in this interplay. We highlight several enabling techniques, which were critical for genome-wide profiling of caRNAs and their modifications. Given the nascent stage of the field, we emphasize on the need to address critical gaps in study of these modifications in more relevant biological systems. Overall, these exciting progress have expanded the scope and reach of epitranscriptomics, unveiling new mechanisms that underpin the control of gene expression and cellular phenotypes, with potential therapeutic implications.
Collapse
Affiliation(s)
- Amber Louwagie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada.
| |
Collapse
|
6
|
Fernández-Maestre I, Cai SF, Levine RL. A View of Myeloid Transformation through the Hallmarks of Cancer. Blood Cancer Discov 2024; 5:377-387. [PMID: 39422551 PMCID: PMC11528188 DOI: 10.1158/2643-3230.bcd-24-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
The development of myeloid malignancies is influenced by a range of cell-intrinsic and cell-extrinsic factors, which can be conceptualized using the hallmarks of cancer. Although many facets of myeloid transformation are similar to those in solid tumors, there are also notable differences. Unlike solid tumors, hematologic malignancies typically exhibit fewer genetic mutations, which have been well characterized. However, understanding the cell-extrinsic factors contributing to myeloid malignancies can be challenging due to the complex interactions in the hematopoietic microenvironment. Researchers need to focus on these intricate factors to prevent the early onset of myeloid transformation and develop appropriate interventions. Significance: Myeloid malignancies are common in the elderly, and acute myeloid leukemia has an adverse prognosis in older patients. Investigating cell-extrinsic factors influencing myeloid malignancies is crucial to developing approaches for preventing or halting disease progression and predicting clinical outcomes in patients with advanced disease. Whereas successful intervention may require targeting various mechanisms, understanding the contribution of each cell-extrinsic factor will help prioritize clinical targets.
Collapse
Affiliation(s)
- Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering, Cancer Center, New York, New York
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering, Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Yang L, Pham K, Xi Y, Jiang S, Robertson KD, Liu C. Acyl-CoA Synthetase Medium-Chain Family Member 5-Mediated Fatty Acid Metabolism Dysregulation Promotes the Progression of Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1951-1966. [PMID: 39069168 PMCID: PMC11423759 DOI: 10.1016/j.ajpath.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with high incidence and mortality worldwide. Despite diagnostic and therapeutic advancements, HCC remains poorly responsive to treatment, with a poor prognosis. Understanding the molecular mechanisms driving HCC is crucial for developing effective therapies. Emerging evidence indicates that dysregulated fatty acid metabolism contributes to HCC. Acyl-CoA medium-chain synthetase 5 (ACSM5), involved in fatty acid metabolism, is down-regulated in HCC; however, its role is not well understood. This study was used to analyze ACSM5 expression in HCC patient samples and cell lines. The newly established ACSM5-overexpressing HCC cell lines, Huh7-ACSM5 and Hepa1-6-ACSM5, were used to investigate the effects and regulatory mechanisms of ACSM5. The results showed that ACSM5 was significantly down-regulated in HCC tumor tissues compared with non-tumor tissues. ACSM5 expression was regulated by DNA methylation, with a DNA methyltransferase 1 (DNMT1) inhibitor effectively increasing ACSM5 expression and reducing promoter region methylation. Overexpression of ACSM5 in Huh7 cells reduced fatty acid accumulation, decreased cell proliferation, migration, and invasion in vitro, and inhibited tumor growth in mouse xenografts. Furthermore, ACSM5 overexpression also decreased STAT3 phosphorylation, subsequently affecting downstream cytokine TGFB and FGF12 mRNA levels. These findings suggest that ACSM5 down-regulation contributes to HCC progression, providing insights into its oncogenic role and highlighting its potential as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Yibo Xi
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shaoning Jiang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
8
|
Zohourian N, Brown JAL. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James AL Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Morelli V, Heizelman RJ. Monitoring Social Determinants of Health Assessing Patients and Communities. Prim Care 2023; 50:527-547. [PMID: 37866829 DOI: 10.1016/j.pop.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Because of the devastating health effects of social determinants of health (SDoH), it is important for the primary care provider to assess and monitor these types of stressors. This can be done via surveys, geomapping, or various biomarkers. To date, however, each of these methods is fraught with obstacles. There are currently are no validated "best" SDoH screening tools for use in clinical practice. Nor is geomapping, a perfect solution. Although mapping can collect location specific factors, it does not account for the fact that patients may live in one area, work in another and travel frequently to a third.
Collapse
Affiliation(s)
- Vincent Morelli
- Department of Family and Community Medicine, Meharry Medical College, 3rd Floor, Old Hospital Building, 1005 Dr. D. B. Todd, Jr., Boulevard, Nashville, TN 37208-3599, USA.
| | - Robert Joseph Heizelman
- Department of Family Medicine, Medical Informatics, University of Michigan, 3rd Floor, Old Hospital Building, 1005 Dr. D. B. Todd, Jr., Boulevard, Nashville, TN 37208-3599, USA
| |
Collapse
|