1
|
He C, Liu W, Jin M, Li Y, Wu Y, Shan L, Chong P, Wei M, Hu F, Liu Y, Li C, Zhang Q. Analysis of full length transcriptome and resistance characteristics of Atraphaxis bracteata under drought. Sci Rep 2025; 15:807. [PMID: 39755718 PMCID: PMC11700114 DOI: 10.1038/s41598-024-80831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/21/2024] [Indexed: 01/06/2025] Open
Abstract
Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A. bracteata under drought stress. The results showed that with the intensification of drought stress, the height, root length and leaf area of A. bracteata seedlings decreased, while the content of osmotic substances and antioxidant enzyme activity increased. Furthermore, a total of 63 907 non-redundant transcript sequences, of which 55 574 transcripts were annotated, 248 178 FLNC sequences, 107 112 high-quality consistent sequences and 291 314 CCSs were obtained from Iso-Seq. Meanwhile, a total of 2 039 AS events, 22 919 SSR, 40 404 CDS and 5 902 lncRNA were also obtained. The RNA-Seq analysis results revealed that a total of 2 821, 3 907 and 5 532 DETs were identified from roots, stems and leaves, respectively, and which had significantly enrichment in "circadian rhythm-plant" and "starch and sucrose metabolism" pathway. These results would be great significance for further research on the stress resistance of A. bracteata and these DETs function.
Collapse
Affiliation(s)
- Cai He
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
- Wuwei Academy of Forestry, Wuwei, 733000, China
| | - Wei Liu
- Wuwei Academy of Forestry, Wuwei, 733000, China
| | - Min Jin
- Wuwei Academy of Forestry, Wuwei, 733000, China
| | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China.
| | - Yuan Wu
- Wuwei Academy of Forestry, Wuwei, 733000, China
| | - Lishan Shan
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Meiying Wei
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Fang Hu
- Wuwei Academy of Forestry, Wuwei, 733000, China
| | - Yuan Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Chaoqun Li
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Qinde Zhang
- Wuwei Academy of Forestry, Wuwei, 733000, China.
| |
Collapse
|
2
|
Qi J, Luo Y, Lu S, Liu H, Huang H, Qiu Y, Zhou X, Ma C. Multi-omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa 'Xinjiang-Daye'). PHYSIOLOGIA PLANTARUM 2024; 176:e14476. [PMID: 39262125 DOI: 10.1111/ppl.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi-omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang-Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi-omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang-Daye alfalfa may exhibit widespread post-transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang-Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
Collapse
Affiliation(s)
- Jianwei Qi
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Songsong Lu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hui Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Haixia Huang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yingde Qiu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaotong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chao Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Xu H, Li M, Ma D, Gao J, Tao J, Meng J. Identification of key genes for triacylglycerol biosynthesis and storage in herbaceous peony (Paeonia lactifolra Pall.) seeds based on full-length transcriptome. BMC Genomics 2024; 25:601. [PMID: 38877407 PMCID: PMC11179206 DOI: 10.1186/s12864-024-10513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.
Collapse
Affiliation(s)
- Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Miao Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Di Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiajun Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Zhou Z, Li J, Gao Y, Wang X, Wang R, Huang H, Zhang Y, Zhao L, Wang P. Research on drought stress in Medicago sativa L. from 1998 to 2023: a bibliometric analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406256. [PMID: 38872890 PMCID: PMC11169798 DOI: 10.3389/fpls.2024.1406256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops in the world. Drought is recognized as a major challenge limiting alfalfa production and threatening food security. Although some literature reviews have been conducted in this area, bibliometric reviews based on large amounts of published data are still lacking. In this paper, a bibliometric analysis of alfalfa drought stress from 1998-2023 was conducted using the Web of Science Core Collection database in order to assess global trends in alfalfa drought stress research and to provide new directions for future research. The results showed that the annual publication output maintained an increase in most years, with China and the United States contributing significantly to the field. Most of the journals published are specialized journals in botany, environmental science, soil science and crop science, as well as related agribusiness journals. "plant growth" and "yield" were the most frequently used keywords, reflecting the important purpose of research in this field. And two main research directions were identified: research on drought response mechanism of alfalfa and exploration of drought-resistant technology. In addition, physiological, biochemical, and molecular responses of drought tolerance and high yield in alfalfa, transgenics, and microbial fertilizer research have been hot research topics in recent years and may continue in the future. The ultimate goal of this paper is to provide a foundational reference for future research on alfalfa's drought resistance and yield optimization mechanisms, thereby enhancing the crop's application in agricultural production.
Collapse
Affiliation(s)
- Zijun Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Junqin Li
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yang Gao
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiangtao Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Rui Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Haiyan Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yu Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Zhou Y, Bai YH, Han FX, Chen X, Wu FS, Liu Q, Ma WZ, Zhang YQ. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC PLANT BIOLOGY 2024; 24:446. [PMID: 38778268 PMCID: PMC11112794 DOI: 10.1186/s12870-024-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Hong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Xia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fu-Sheng Wu
- Shandong Provincial Center of Forest and Grass, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China.
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yong-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Shan T, Xu J, Zhong X, Zhang J, He B, Tao Y, Wu J. Full-length transcriptome sequencing provides new insights into the complexity of flavonoid biosynthesis in Glechoma longituba. PHYSIOLOGIA PLANTARUM 2023; 175:e14104. [PMID: 38148235 DOI: 10.1111/ppl.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Glechoma longituba has been frequently used in treating urolithiasis and cholelithiasis due to the presence of flavonoids, which are its major bioactive constituents. However, research on the molecular background of flavonoid biosynthesis in G. longituba is limited. In this study, we used single-molecule real-time combined with next-generation sequencing technologies to construct the complete transcriptome of G. longituba. We identified 404,648 non-redundant transcripts, including 249,697 coding sequences, 197,811 simple sequence repeats, 174,846 long noncoding RNA, and 176,554 coding RNA. Moreover, we functionally annotated 346,218 isoforms (85.56%) and identified 86,528 differentially expressed genes. We also identified 55 non-redundant full-length isoforms related to the flavonoid biosynthetic pathway. Pearson correlation analysis revealed that the expression levels of some key genes of the flavonoid biosynthesis pathway were significantly positively correlated with the flavonoid metabolites. Furthermore, we performed bioinformatics analysis (sequence and structural) of isoform_47029 (encoding flavanone 3-hydroxylase) and isoform_53692 (encoding flavonol synthase) to evaluate their potential biological functions. Finally, we validated gene expression levels of 12 flavonoid-related key enzyme genes using quantitative real-time PCR. Overall, this study provides full-length transcriptome information on G. longituba for the first time and valuable molecular resources for further research on the medicinal properties of this plant.
Collapse
Affiliation(s)
- Tingyu Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingyao Xu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xinxin Zhong
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Yijia Tao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|