1
|
Uguen K, Michaud JL, Génin E. Short Tandem Repeats in the era of next-generation sequencing: from historical loci to population databases. Eur J Hum Genet 2024; 32:1037-1044. [PMID: 38982300 PMCID: PMC11369099 DOI: 10.1038/s41431-024-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we explore the landscape of short tandem repeats (STRs) within the human genome through the lens of evolving technologies to detect genomic variations. STRs, which encompass approximately 3% of our genomic DNA, are crucial for understanding human genetic diversity, disease mechanisms, and evolutionary biology. The advent of high-throughput sequencing methods has revolutionized our ability to accurately map and analyze STRs, highlighting their significance in genetic disorders, forensic science, and population genetics. We review the current available methodologies for STR analysis, the challenges in interpreting STR variations across different populations, and the implications of STRs in medical genetics. Our findings underscore the urgent need for comprehensive STR databases that reflect the genetic diversity of global populations, facilitating the interpretation of STR data in clinical diagnostics, genetic research, and forensic applications. This work sets the stage for future studies aimed at harnessing STR variations to elucidate complex genetic traits and diseases, reinforcing the importance of integrating STRs into genetic research and clinical practice.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France.
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
2
|
Zhang M. STRAS:a snakemake pipeline for genome-wide short tandem repeats annotation and score. Hum Genet 2024; 143:735-738. [PMID: 38507015 DOI: 10.1007/s00439-024-02662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
High-throughput whole genome sequencing (WGS) is clinically used in finding single nucleotide variants and small indels. Several bioinformatics tools are developed to call short tandem repeats (STRs) copy numbers from WGS data, such as ExpansionHunter denovo, GangSTR and HipSTR. However, expansion disorders are rare and it is hard to find candidate expansions in single patient sequencing data with ~ 800,000 STRs calls. In this paper I describe a snakemake pipeline for genome-wide STRs Annotation and Score (STRAS) using a Random Forest (RF) model to predict pathogenicity. The predictor was validated by benchmark data from Clinvar and PUBMED. True positive rate was 93.8%. True negative rate was 98.0%.Precision was 98.6% and recall rate was 93.8%. F1-score was 0.961. Sensitivity was 93.8% and specificity was 99.6%. These results showed STRAS could be a useful tool for clinical researchers to find STR loci of interest and filter out neutral STRs. STRAS is freely available at https://github.com/fancheyu5/STRAS .
Collapse
Affiliation(s)
- Mengna Zhang
- Molecular Diagnosis Center, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
3
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Liu Q, Chen J, Xue J, Zhou X, Tian Y, Xiao Q, Huang W, Pan Y, Zhou X, Li J, Zhao Y, Pan H, Wang Y, He R, Xiang Y, Tu T, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Shen L, Duan R, Tang B, Liu Z. GGC expansions in NOTCH2NLC contribute to Parkinson disease and dopaminergic neuron degeneration. Eur J Neurol 2024; 31:e16145. [PMID: 37975799 PMCID: PMC11235938 DOI: 10.1111/ene.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Juan Chen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jin Xue
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xun Zhou
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Tian
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiao Xiao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Wen Huang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Yongcheng Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jian Li
- Department of Nuclear Medicine, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuwen Zhao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongxu Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yige Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Runcheng He
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yaqin Xiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Tian Tu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiying Sun
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jinchen Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhenhua Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|