1
|
Atsawawaranunt K, Stuart KC, Whibley A, Ewart KM, Major RE, Johnson RN, Santure AW. Parallel Signatures of Diet Adaptation in the Invasive Common Myna Genome. Mol Ecol 2025; 34:e17607. [PMID: 39670972 DOI: 10.1111/mec.17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Invasive species offer uniquely replicated model systems to study rapid adaptation. The common myna (Acridotheres tristis) has been introduced to over a dozen countries and is classified as one of the most invasive birds in the world. Their multiple invasions provide an opportunity to identify repeated adaptation, as invasive populations originated from multiple source populations. We compared whole-genome resequencing data from 80 individuals from four native and seven invasive populations, representing two independent introduction pathways. Results from two different selection scan methods were combined and identified a strongly selected region on chromosome 8 that spans two copies of AMY2A, part of the alpha-amylase gene family, a putative ncRNA and an insertion-deletion structural variant (SV) that contains an ERVK transposable element (TE). Outlier SNPs and the SV are polymorphic in native populations, but fixed or close-to-fixed in the two invasive pathways, with the fixation of the same alleles in two independent lineages providing evidence for parallel selection on standing variation. Intriguingly, the second copy of AMY2A has a non-conservative missense mutation at a phylogenetically conserved site. This mutation, alongside variation in the SV, TE and ncRNA, provide possible routes for changes to protein function or expression. AMY2A has been associated with human commensalism in house sparrows, and genes in this family have been linked to adaptation to high-starch diets in humans and dogs. This study illustrates the value of replicated analyses within and across species to understand rapid adaptation at the molecular level.
Collapse
Affiliation(s)
| | - Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
| | - Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Zichello JM, DeLiberto ST, Holmes P, Pierwola AA, Werner SJ. Recent beak evolution in North American starlings after invasion. Sci Rep 2024; 14:140. [PMID: 38167426 PMCID: PMC10761893 DOI: 10.1038/s41598-023-49623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
European starlings are one of the most abundant and problematic avian invaders in the world. From their native range across Eurasia and North Africa, they have been introduced to every continent except Antarctica. In 160 years, starlings have expanded into different environments throughout the world, making them a powerful model for understanding rapid evolutionary change and adaptive plasticity. Here, we investigate their spatiotemporal morphological variation in North America and the native range. Our dataset includes 1217 specimens; a combination of historical museum skins and modern birds. Beak length in the native range has remained unchanged during the past 206 years, but we find beak length in North American birds is now 8% longer than birds from the native range. We discuss potential drivers of this pattern including dietary adaptation or climatic pressures. Additionally, body size in North American starlings is smaller than those from the native range, which suggests a role for selection or founder effect. Taken together, our results indicate rapid recent evolutionary change in starling morphology coincident with invasion into novel environments.
Collapse
Affiliation(s)
- Julia M Zichello
- Hunter College, City University of New York, New York, NY, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY, USA.
| | - Shelagh T DeLiberto
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Paul Holmes
- Animal and Plant Health Agency, Shrewsbury Veterinary Investigation Centre, Shrewsbury, SY1 4HD, UK
| | - Agnieszka A Pierwola
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|
3
|
Hofmeister NR, Stuart KC, Warren WC, Werner SJ, Bateson M, Ball GF, Buchanan KL, Burt DW, Cardilini APA, Cassey P, De Meyer T, George J, Meddle SL, Rowland HM, Sherman CDH, Sherwin WB, Vanden Berghe W, Rollins LA, Clayton DF. Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions. Mol Ecol 2023. [PMID: 37933429 DOI: 10.1111/mec.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Katarina C Stuart
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wesley C Warren
- Department of Animal Sciences and Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Melissa Bateson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | | | - David W Burt
- Office of the Deputy Vice-Chancellor (Research and Innovation), The University of Queensland, Brisbane, Queensland, Australia
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Phillip Cassey
- Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, South Australia, Australia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Julia George
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Hannah M Rowland
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Craig D H Sherman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - William B Sherwin
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Lee Ann Rollins
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - David F Clayton
- Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Global invasion history and native decline of the common starling: insights through genetics. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractFew invasive birds are as globally successful as the Common or European Starling (Sturnus vulgaris). Native to the Palearctic, the starling has been intentionally introduced to North and South America, South Africa, Australia, and the Pacific Islands, enabling us to explore species traits that may contribute to its invasion success. Coupling the rich studies of life history and more recent explorations of genomic variation among invasions, we illustrate how eco-evolutionary dynamics shape the invasion success of this long-studied and widely distributed species. Especially informative is the comparison between Australian and North American invasions, because these populations colonized novel ranges concurrently and exhibit shared signals of selection despite distinct population histories. In this review, we describe population dynamics across the native and invasive ranges, identify putatively selected traits that may influence the starling’s spread, and suggest possible determinants of starling success world-wide. We also identify future opportunities to utilize this species as a model for avian invasion research, which will inform our understanding of species’ rapid evolution in response to environmental change.
Collapse
|
5
|
Stuart KC, Sherwin WB, Edwards RJ, Rollins LA. Evolutionary genomics: Insights from the invasive European starlings. Front Genet 2023; 13:1010456. [PMID: 36685843 PMCID: PMC9845568 DOI: 10.3389/fgene.2022.1010456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Two fundamental questions for evolutionary studies are the speed at which evolution occurs, and the way that this evolution may present itself within an organism's genome. Evolutionary studies on invasive populations are poised to tackle some of these pressing questions, including understanding the mechanisms behind rapid adaptation, and how it facilitates population persistence within a novel environment. Investigation of these questions are assisted through recent developments in experimental, sequencing, and analytical protocols; in particular, the growing accessibility of next generation sequencing has enabled a broader range of taxa to be characterised. In this perspective, we discuss recent genetic findings within the invasive European starlings in Australia, and outline some critical next steps within this research system. Further, we use discoveries within this study system to guide discussion of pressing future research directions more generally within the fields of population and evolutionary genetics, including the use of historic specimens, phenotypic data, non-SNP genetic variants (e.g., structural variants), and pan-genomes. In particular, we emphasise the need for exploratory genomics studies across a range of invasive taxa so we can begin understanding broad mechanisms that underpin rapid adaptation in these systems. Understanding how genetic diversity arises and is maintained in a population, and how this contributes to adaptability, requires a deep understanding of how evolution functions at the molecular level, and is of fundamental importance for the future studies and preservation of biodiversity across the globe.
Collapse
Affiliation(s)
- Katarina C. Stuart
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - William B. Sherwin
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Richard J. Edwards
- Evolution & Ecology Research Centre, School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|