1
|
Chen P, Ni S, Ou-Yang L. Causal inference of inflammatory proteins in infertility: a Mendelian randomization study. Front Endocrinol (Lausanne) 2025; 16:1448530. [PMID: 40070583 PMCID: PMC11893426 DOI: 10.3389/fendo.2025.1448530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background Infertility affects 8-12% of couples globally, manifesting as a complex reproductive disorder with varied causes, negatively impacting emotional, physical, and social well-being. Inflammation is implicated in many diseases, including male and female infertility. Methods This study employed Mendelian randomization (MR) with two-sample, bidirectional, and mediation approaches to explore the relationship between circulating inflammatory proteins and infertility. Causal analysis was conducted using inverse variance-weighted (IVW) and MR-Egger regression, supplemented by enrichment analysis, protein-protein interaction (PPI) network exploration, and drug signature analysis. Results Our findings identified a significant positive correlation between C-X-C motif chemokine 6 (CXCL6) and male infertility, positioning CXCL6 as a potential therapeutic target or biomarker. No causal links were detected between circulating inflammatory proteins and female infertility post-FDR adjustment. Minor mediation effects were observed for metabolites such as androstenediol monosulfate, arachidonoylcholine, and serum phosphate to glycerol ratio. Cytokine-related pathways emerged as significant in both male and female infertility. Gene-drug interaction analysis highlighted the need for further investigation of pioglitazone in treating female infertility. Conclusion This study establishes a potentially causal relationship between CXCL6 and male infertility, suggesting its potential as a drug target or molecular biomarker. The integrative approach combining causal inference with molecular pathway and drug interaction analysis opens new avenues for understanding and treating infertility.
Collapse
Affiliation(s)
| | - Sha Ni
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | |
Collapse
|
2
|
Feng Y, Zhang Z, Tang J, Chen Y, Hu D, Huang X, Li F. Ferroptosis-related biomarkers for adamantinomatous craniopharyngioma treatment: conclusions from machine learning techniques. Front Endocrinol (Lausanne) 2024; 15:1362278. [PMID: 39605941 PMCID: PMC11598535 DOI: 10.3389/fendo.2024.1362278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Adamantinomatous craniopharyngioma (ACP) is difficult to cure completely and prone to recurrence after surgery. Ferroptosis as an iron-dependent programmed cell death, may be a critical process in ACP. The study aimed to screen diagnostic markers related to ferroptosis in ACP to improve diagnostic accuracy. Methods Gene expression profiles of ACP were obtained from the gene expression omnibus (GEO) database. Limma package was used to analyze the differently expressed genes (DEGs). The intersection of DEGs and ferroptosis-related factors was obtained as differently expressed ferroptosis-related genes (DEFRGs). Enrichment analysis was processed, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), gene set enrichment analysis (GSEA), and Gene Set Variation Analysis (GSVA) analysis. Machine learning algorithms were undertaken for screening diagnostic markers associated with ferroptosis in ACP. The levels of DEFRGs were verified in ACP patients. A nomogram was drawn to predict the relationship between key DEFRG expression and risk of disease. The disease groups were then clustered by consensus clustering analysis. Results DEGs were screened between ACP and normal samples. Ferroptosis-related factors were obtained from the FerrDb V2 and GeneCard databases. The correlation between DEFRGs and ferroptosis markers was also confirmed. A total of 6 overlapped DEFRGs were obtained. Based on the results of the nomogram, CASP8, KRT16, KRT19, and TP63 were the protective factors of the risk of disease, while GOT1 and TFAP2C were the risk factors. According to screened DEFRGs, the consensus clustering matrix was differentiated, and the number of clusters was stable. CASP8, KRT16, KRT19, and TP63, were upregulated in ACP patients, while GOT1 was downregulated. CASP8, KRT16, KRT19, TP63, CASP8, and GOT1 affect multiple ferroptosis marker genes. The combination of these genes might be the biomarker for ACP diagnosis via participating ferroptosis process. Discussion Ferroptosis-related genes, including CASP8, KRT16, KRT19, TP63, and GOT1 were the potential markers for ACP, which lays the theoretical foundation for ACP diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Qin H, Liu J, Li YY, Xu YL, Yan YF. Gender-specific microbial signatures in saliva: Unveiling the association between the oral microbiome and the pathogenesis of glioma. Heliyon 2024; 10:e37284. [PMID: 39296230 PMCID: PMC11407923 DOI: 10.1016/j.heliyon.2024.e37284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
The intricate interplay between the human oral microbiome and systemic health is increasingly being recognized, particularly in the context of central nervous system pathologies such as glioblastoma. In this study, we aimed to elucidate gender-specific differences in the salivary microbiome of glioma patients by utilizing 16S rRNA sequencing data from publicly available salivary microbiome datasets. We conducted comprehensive bioinformatics analysis, encompassing quality control, noise reduction, species classification, and microbial community composition analysis at various taxonomic levels. Machine learning algorithms were employed to identify microbial signatures associated with glioma. When compared to healthy controls, our analysis revealed distinct differences in the salivary microbiota of glioma patients. Notably, the genera Leptotrichia and Atopobium exhibited significant variations in abundance between genders. Leptotrichia was prevalent in healthy females but exhibited a reduced abundance in female glioma patients. In contrast, Atopobium was more abundant in male glioma patients. These findings suggest that hormonal influences might play a role in shaping the salivary microbiome and its association with glioma. We utilized a combination of LASSO-logistic regression and random forest models for feature selection, and identified key microbial features that differentiated glioma patients from healthy controls. We developed a diagnostic model with high predictive accuracy and area under the curve and principal component analysis metrics confirmed its robustness. The analysis of microbial markers, including Atopobium and Leptotrichia, highlighted the potential of the salivary microbiota as a non-invasive biomarker for the diagnosis and prognosis of glioma. Our findings highlight significant gender-specific disparities in the salivary microbiome of patients with glioma, offering new insights into the pathogenesis of glioma and paving the way for innovative diagnostic and therapeutic strategies. The use of saliva as a diagnostic fluid, given its ease of collection and non-invasive nature, holds immense promise for monitoring systemic health and the trajectory of disease. Future research should focus on investigating the underlying mechanisms by which the salivary microbiome influences the development of glioma and identifying potential microbiome-targeted therapies to enhance the management of glioma.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
4
|
Deng H, Lei T, Liu S, Hao W, Hu M, Xiang X, Ye L, Chen D, Li Y, Liu F. Proteomics study of primary and recurrent adamantinomatous craniopharyngiomas. Clin Proteomics 2024; 21:29. [PMID: 38594611 PMCID: PMC11003072 DOI: 10.1186/s12014-024-09479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Adamantinomatous craniopharyngiomas (ACPs) are rare benign epithelial tumours with high recurrence and poor prognosis. Biological differences between recurrent and primary ACPs that may be associated with disease recurrence and treatment have yet to be evaluated at the proteomic level. In this study, we aimed to determine the proteomic profiles of paired recurrent and primary ACP, gain biological insight into ACP recurrence, and identify potential targets for ACP treatment. METHOD Patients with ACP (n = 15) or Rathke's cleft cyst (RCC; n = 7) who underwent surgery at Sanbo Brain Hospital, Capital Medical University, Beijing, China and received pathological confirmation of ACP or RCC were enrolled in this study. We conducted a proteomic analysis to investigate the characteristics of primary ACP, paired recurrent ACP, and RCC. Western blotting was used to validate our proteomic results and assess the expression of key tumour-associated proteins in recurrent and primary ACPs. Flow cytometry was performed to evaluate the exhaustion of tumour-infiltrating lymphocytes (TILs) in primary and recurrent ACP tissue samples. Immunohistochemical staining for CD3 and PD-L1 was conducted to determine differences in T-cell infiltration and the expression of immunosuppressive molecules between paired primary and recurrent ACP samples. RESULTS The bioinformatics analysis showed that proteins differentially expressed between recurrent and primary ACPs were significantly associated with extracellular matrix organisation and interleukin signalling. Cathepsin K, which was upregulated in recurrent ACP compared with that in primary ACP, may play a role in ACP recurrence. High infiltration of T cells and exhaustion of TILs were revealed by the flow cytometry analysis of ACP. CONCLUSIONS This study provides a preliminary description of the proteomic differences between primary ACP, recurrent ACP, and RCC. Our findings serve as a resource for craniopharyngioma researchers and may ultimately expand existing knowledge of recurrent ACP and benefit clinical practice.
Collapse
Affiliation(s)
- Haidong Deng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ting Lei
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Siqi Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenzhe Hao
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengqing Hu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xin Xiang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Ling Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dongting Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fangjun Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
5
|
De Rosa A, Calvanese F, Ducray F, Vasiljevic A, Manet R, Raverot G, Jouanneau E. First evidence of anti-VEGF efficacy in an adult case of adamantinomatous craniopharyngioma: Case report and illustrative review. ANNALES D'ENDOCRINOLOGIE 2023; 84:727-733. [PMID: 37865272 DOI: 10.1016/j.ando.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Craniopharyngioma (CP) is a neurosurgical challenge, due to location and to the substantial risk of morbidity associated with surgical resection. Recent advances in molecular research have identified a mutation signature in papillary craniopharyngiomas: BRAF V600E. This has led to targeted therapy, yielding positive results. Despite numerous studies of the pathophysiology of adamantinomatous craniopharyngioma, treatment options for molecular-based therapy are still lacking. The objective of our study was to provide an illustrative review of the literature on possible molecular targets in adamantinomatous craniopharyngioma and to report the case of a patient harboring an adamantinomatous craniopharyngioma deemed unsuitable for surgical resection, in which an anti-VEGF antibody was used to achieve tumor control. CASE REPORT An 84-year-old-man was referred to our department with a history of visual loss caused by recurrent infundibular adamantinomatous craniopharyngioma. A first surgical attempt to reduce the cystic portion of the tumor compressing the optic pathway failed. Due to rapid worsening of visual function, adjuvant therapy with bevacizumab was initiated before radiotherapy. RESULTS Neuroradiological and ophthalmological follow-up showed a decrease in tumor volume and improvement in visual function as early as 6 weeks after commencing therapy. These results were confirmed 3 months after commencement of chemotherapy. Radiotherapy was scheduled for long-term tumor control. CONCLUSIONS To the best of our knowledge, our case is the first in the literature in which targeted therapy using anti-VEGF was successfully used as a single agent to treat adamantinomatous craniopharyngioma, with favorable outcome in terms of tumor shrinkage and clinical improvement. These preliminary results may open new perspectives for the management of adamantinomatous craniopharyngioma. Validation of this approach requires additional clinical evidence.
Collapse
Affiliation(s)
- Andrea De Rosa
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II", Naples, Italy; Skull Base and Pituitary Unit, Department of Neurosurgery B, Neurological Hospital Pierre-Wertheimer, Bron, 69677 Lyon, France.
| | - Francesco Calvanese
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki University, Meilahden tornisairaala, Haartmaninkatu 4 Rakennus 1, 00290 Helsinki, Finland
| | - François Ducray
- Cancer Initiation and Tumoral Cell Identity (CITI) Department, Cancer Research Centre of Lyon (CRCL) Inserm 1052, CNRS 5286, université Claude-Bernard Lyon I, centre Léon-Bérard, Lyon, France
| | - Alexandre Vasiljevic
- Department of Pathology and Neuropathology, GHE, Hospices Civils de Lyon, Lyon, France
| | - Romain Manet
- Skull Base and Pituitary Unit, Department of Neurosurgery B, Neurological Hospital Pierre-Wertheimer, Bron, 69677 Lyon, France
| | - Gerald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "groupement hospitalier Est" hospices civils de Lyon, "Claude-Bernard" Lyon 1 University, hôpital Louis-Pradel, Lyon, France
| | - Emmanuel Jouanneau
- Skull Base and Pituitary Unit, Department of Neurosurgery B, Neurological Hospital Pierre-Wertheimer, Bron, 69677 Lyon, France; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, University Claude-Bernard Lyon 1, 69000 Lyon, France
| |
Collapse
|
6
|
Hatthakarnkul P, Ammar A, Pennel KAF, Officer-Jones L, Cusumano S, Quinn JA, Matly AAM, Alexander PG, Hay J, Andersen D, Lynch G, van Wyk HC, Maka N, McMillan DC, Le Quesne J, Thuwajit C, Edwards J. Protein expression of S100A2 reveals it association with patient prognosis and immune infiltration profile in colorectal cancer. J Cancer 2023; 14:1837-1847. [PMID: 37476187 PMCID: PMC10355195 DOI: 10.7150/jca.83910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most diagnosed cancer worldwide. Despite a well-established knowledge of tumour development, biomarkers to predict patient outcomes are still required. S100 calcium-binding protein A2 (S100A2) has been purposed as a potential marker in many types of cancer, however, the prognostic value of S100A2 in CRC is rarely reported. MATERIAL AND METHODS In this study, immunohistochemistry (IHC) was performed to identify the prognostic role of S100A2 protein expression in the tumour core of the tissue microarrays (TMAs) in colorectal cancer patients (n=787). Bulk RNA transcriptomic data was used to identify significant genes compared between low and high cytoplasmic S100A2 groups. Multiplex immunofluorescence (mIF) was performed to further study and confirm the immune infiltration in tumours with low and high cytoplasmic S100A2. RESULTS Low cytoplasmic protein expression of S100A2 in the tumour core was associated with poor survival (HR 0.539, 95%CI 0.394-0.737, P<0.001) and other adverse tumour phenotypes. RNA transcriptomic analysis showed a gene significantly associated with the low cytoplasmic S100A2 group (AKT3, TAGLN, MYLK, FGD6 and ETFDH), which correlated with tumour development and progression. GSEA analysis identifies the enriched anti-tumour and immune activity group of genes in high cytoplasmic S100A2. Additionally, mIF staining showed that high CD3+FOXP3+ and CD163+ inversely associated with low cytoplasmic S100A2 (P<0.001, P=0.009 respectively). CONCLUSION Our finding demonstrates a prognostic value of S100A2 together with the correlation with immune infiltration in CRC.
Collapse
Affiliation(s)
- Phimmada Hatthakarnkul
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
- Biomedical Science Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aula Ammar
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Kathryn A. F. Pennel
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Leah Officer-Jones
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Silvia Cusumano
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Jean A. Quinn
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Amna Ahmed Mohemmed Matly
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Peter G. Alexander
- School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Gerard Lynch
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Hester C. van Wyk
- School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom
| | - Noori Maka
- School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom
| | - Donald C. McMillan
- School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
7
|
Zhang Z, Zhang F, Pang P, Li Y, Chen X, Sun S, Bian Y. Identification of PANoptosis-relevant subgroups to evaluate the prognosis and immune landscape of patients with liver hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1210456. [PMID: 37325556 PMCID: PMC10267832 DOI: 10.3389/fcell.2023.1210456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the most common malignant tumors, which is difficult to be diagnosed at an early stage due to its poor prognosis. Despite the fact that PANoptosis is important in the occurrence and development of tumors, no bioinformatic explanation related to PANoptosis in LIHC can be found. A bioinformatics analysis on the data of LIHC patients in TCGA database was carried out on the basis of previously identified PANoptosis-related genes (PRGs). LIHC patients were divided into two PRG clusters whose gene characteristics of differentially expressed genes (DEGs) were discussed. According to DEGs, the patients were further divided into two DEG clusters, and prognostic-related DEGs (PRDEGs) were applied to risk score calculation, the latter of which turned out to be practical in identifying the relationship among risk score, patient prognosis, and immune landscape. The results suggested that PRGs and relevant clusters were bound up with the survival and immunity of patients. Moreover, the prognostic value based on two PRDEGs was evaluated, the risk scoring model was constructed, and the nomogram model for predicting the survival rate of patients was further developed. Therefore, it was found that the prognosis of the high-risk subgroup was poor. Additionally, three factors, namely, the abundance of immune cells, the expression of immune checkpoints, and immunotherapy and chemotherapy were considered to be associated with the risk score. RT-qPCR results indicated higher positive expression of CD8A and CXCL6 in both LIHC tissues and most human liver cancer cell lines. In summary, the results suggested that PANoptosis was bound up with LIHC-related survival and immunity. Two PRDEGs were identified as potential markers. Thus, the understanding of PANoptosis in LIHC was enriched, with some strategies provided for the clinical therapy of LIHC.
Collapse
Affiliation(s)
- Zhengwei Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yapeng Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoning Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Teng Y, Ran X, Chen B, Chen C, Xu J. Pathological Diagnosis of Adult Craniopharyngioma on MR Images: An Automated End-to-End Approach Based on Deep Neural Networks Requiring No Manual Segmentation. J Clin Med 2022; 11:jcm11247481. [PMID: 36556097 PMCID: PMC9782822 DOI: 10.3390/jcm11247481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The goal of this study was to develop end-to-end convolutional neural network (CNN) models that can noninvasively discriminate papillary craniopharyngioma (PCP) from adamantinomatous craniopharyngioma (ACP) on MR images requiring no manual segmentation. MATERIALS AND METHODS A total of 97 patients diagnosed with ACP or PCP were included. Pretreatment contrast-enhanced T1-weighted images were collected and used as the input of the CNNs. Six models were established based on six networks, including VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, and DenseNet169. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess the performances of these deep neural networks. A five-fold cross-validation was applied to evaluate the performances of the models. RESULTS The six networks yielded feasible performances, with area under the receiver operating characteristic curves (AUCs) of at least 0.78 for classification. The model based on Resnet50 achieved the highest AUC of 0.838 ± 0.062, with an accuracy of 0.757 ± 0.052, a sensitivity of 0.608 ± 0.198, and a specificity of 0.845 ± 0.034, respectively. Moreover, the results also indicated that the CNN method had a competitive performance compared to the radiomics-based method, which required manual segmentation for feature extraction and further feature selection. CONCLUSIONS MRI-based deep neural networks can noninvasively differentiate ACP from PCP to facilitate the personalized assessment of craniopharyngiomas.
Collapse
Affiliation(s)
- Yuen Teng
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoping Ran
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Ziyang People’s Hospital, Ziyang 641300, China
| | - Boran Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Correspondence: (C.C.); (J.X.)
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Correspondence: (C.C.); (J.X.)
| |
Collapse
|
9
|
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022; 13:985863. [PMID: 36211379 PMCID: PMC9538115 DOI: 10.3389/fimmu.2022.985863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor microenvironment (TME) is gaining increasing attention in modern cancer therapies because it can reveal unique information about the tumor status. As tumor-associated macrophages (TAMs) are the major immune cells infiltrating in TME, a better understanding of TAMs could help us further elucidate the cellular and molecular mechanisms responsible for cancer development. However, the high-dimensional and heterogeneous data in biology limit the extensive integrative analysis of cancer research. Machine learning algorithms are particularly suitable for oncology data analysis due to their flexibility and scalability to analyze diverse data types and strong computation power to learn underlying patterns from massive data sets. With the application of machine learning in analyzing TME, especially TAM’s traceable status, we could better understand the role of TAMs in tumor biology. Furthermore, we envision that the promotion of machine learning in this field could revolutionize tumor diagnosis, treatment stratification, and survival predictions in cancer research. In this article, we described key terms and concepts of machine learning, reviewed the applications of common methods in TAMs, and highlighted the challenges and future direction for TAMs in machine learning.
Collapse
Affiliation(s)
- Zhen Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyuan Zhu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
10
|
The Challenging Management of Craniopharyngiomas in Adults: Time for a Reappraisal? Cancers (Basel) 2022; 14:cancers14153831. [PMID: 35954494 PMCID: PMC9367482 DOI: 10.3390/cancers14153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Craniopharyngiomas (CPs) currently represent one of the most challenging diseases to deal with in the group of skull base tumors. Due to their location near, within, or surrounding the pituitary gland and stalk, CPs can be revealed by pituitary tumor syndrome and/or symptoms of hormonal deficiencies. Furthermore, surgery, which represents the first-line therapy, almost always results in hypopituitarism, diabetes insipidus and, in the case of hypothalamic involvement by the tumor, the occurrence of hypothalamic syndrome. The latter is characterized by intractable weight gain associated with severe morbid obesity, memory impairment, attention deficit, reduced impulse control and, eventually, increased risk of cardiovascular and metabolic disorders. Recent progress made in the understanding of the molecular pathways involved in CPs tumorigenesis paves the way for promising alternative therapeutic approaches and diagnostic procedures. Taken together, they lay the groundwork for new paradigms in the management of CPs in adults. Abstract Craniopharyngiomas (CPs) are rare tumors of the skull base, developing near the pituitary gland and hypothalamus and responsible for severe hormonal deficiencies and an overall increase in mortality rate. While surgery and radiotherapy represent the recommended first-line therapies for CPs, a new paradigm for treatment is currently emerging, as a consequence of accumulated knowledge concerning the molecular mechanisms involved in tumor growth, paving the way for anticipated use of targeted therapies. Significant clinical and basic research conducted in the field of CPs will undoubtedly constitute a real step forward for a better understanding of the behavior of these tumors and prevent associated complications. In this review, our aim is to summarize the multiple steps in the management of CPs in adults and emphasize the most recent studies that will contribute to advancing the diagnostic and therapeutic algorithms.
Collapse
|
11
|
Influence of S100A2 in Human Diseases. Diagnostics (Basel) 2022; 12:diagnostics12071756. [PMID: 35885660 PMCID: PMC9316160 DOI: 10.3390/diagnostics12071756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
S100 proteins are a family of low-molecular-weight proteins characterized by two calcium-binding sites with a helix-loop-helix (“EF-hand-type”) domain. The S100 family of proteins is distributed across various organs and can interact with diverse molecules. Among the proteins of the S100 family, S100 calcium-binding protein A2 (S100A2) has been identified in mammary epithelial cells, glands, lungs, kidneys, and prostate gland, exhibiting various physiological and pathological actions in human disorders, such as inflammatory diseases and malignant tumors. In this review, we introduce basic knowledge regarding S100A2 regulatory mechanisms. Although S100A2 is a tumor suppressor, we describe the various influences of S100A2 on cancer and inflammatory diseases.
Collapse
|