1
|
Cavalli A, Caraffi SG, Rizzi S, Trimarchi G, Napoli M, Frattini D, Spagnoli C, Garavelli L, Fusco C. Heterozygous truncating variant of TAOK1 in a boy with periventricular nodular heterotopia: a case report and literature review of TAOK1-related neurodevelopmental disorders. BMC Med Genomics 2024; 17:68. [PMID: 38443934 PMCID: PMC10916022 DOI: 10.1186/s12920-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Thousand and one amino-acid kinase 1 (TAOK1) encodes the MAP3K protein kinase TAO1, which has recently been displayed to be essential for neuronal maturation and cortical differentiation during early brain development. Heterozygous variants in TAOK1 have been reported in children with neurodevelopmental disorders, with or without macrocephaly, hypotonia and mild dysmorphic traits. Literature reports lack evidence of neuronal migration disorders in TAOK1 patients, although studies in animal models suggest this possibility. CASE PRESENTATION We provide a clinical description of a child with a neurodevelopmental disorder due to a novel TAOK1 truncating variant, whose brain magnetic resonance imaging displays periventricular nodular heterotopia. CONCLUSIONS To our knowledge, this is the first report of a neuronal migration disorder in a patient with a TAOK1-related neurodevelopmental disorder, thus supporting the hypothesized pathogenic mechanisms of TAOK1 defects.
Collapse
Affiliation(s)
- Anna Cavalli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Arcispedale santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
2
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Beeman N, Sapre T, Ong SE, Yadav S. Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Sci Signal 2023; 16:eadd3269. [PMID: 36595571 PMCID: PMC9970049 DOI: 10.1126/scisignal.add3269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations in TAOK1, which encodes a serine-threonine kinase, are associated with both autism spectrum disorder (ASD) and neurodevelopmental delay (NDD). Here, we investigated the molecular function of this evolutionarily conserved kinase and the mechanisms through which TAOK1 mutations may lead to neuropathology. We found that TAOK1 was abundant in neurons in the mammalian brain and remodeled the neuronal plasma membrane through direct association with phosphoinositides. Our characterization of four NDD-associated TAOK1 mutations revealed that these mutants were catalytically inactive and were aberrantly trapped in a membrane-bound state, which induced abnormal membrane protrusions. Expression of these TAOK1 mutants in cultured mouse hippocampal neurons led to abnormal growth of the dendritic arbor. The coiled-coil region carboxyl-terminal to the kinase domain was predicted to fold into a triple helix, and this region directly bound phospholipids and was required for both membrane association and induction of aberrant protrusions. Autophosphorylation of threonine-440 and threonine-443 in the triple-helical region by the kinase domain blocked the plasma membrane association of TAOK1. These findings define TAOK1 as a plasma membrane remodeling kinase and reveal the underlying mechanisms through which TAOK1 dysfunction may lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Neal Beeman
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle WA 98195,Corresponding author:
| |
Collapse
|
4
|
Couce ML, González-Vioque E. Editorial: NGS technologies of rare diseases diagnosis. Front Pediatr 2022; 10:1032359. [PMID: 36444169 PMCID: PMC9699829 DOI: 10.3389/fped.2022.1032359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- María L Couce
- Diagnosis and Treatment Unit of Congenital Metabolic Diseases, Department of Paediatrics, University Clinical Hospital of Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Emiliano González-Vioque
- Molecular Genetics Unit, Clinical Biochemistry Service, University Hospital Puerta de Hierro, Madrid, Spain
| |
Collapse
|