1
|
Zheng S, Wang C, Fu J, Shao J. Investigating Overlapping Immune-related Genetic Markers in Cholangiocarcinoma and Inflammatory Bowel Disease for Predictive Prognosis. J Immunother 2025:00002371-990000000-00142. [PMID: 40384613 DOI: 10.1097/cji.0000000000000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025]
Abstract
This study aims to explore the common immune-related gene characteristics of cholangiocarcinoma (CHOL) and inflammatory bowel disease (IBD) to predict disease prognosis. By analyzing the gene expression data from the TCGA, GEO, and NGDC databases, differentially expressed immune-related genes (DE-IRGs) were screened, and a prognostic model was constructed. The results showed that CCR7, OSM, S100P, ACVR1C, OSMR, SPP1, and PIK3R3 were key immune-related genes, and their expressions were closely related to the occurrence and development of CHOL and IBD. Patients in the low immune risk score (IRS) group had more abundant antitumor immune cell infiltration, while those in the high IRS group had more macrophage infiltration. In addition, the model based on these genes had good predictive ability for the diagnosis and prognosis of CHOL and IBD, with an area under the ROC curve (AUC) value exceeding 0.7. This study also predicted potential small molecule drugs that might be effective for the treatment of CHOL, such as Umbralisib and Tamoxifen. In conclusion, this study provides new biomarkers and potential targets for diagnosis, prognosis assessment, and treatment of CHOL and IBD.
Collapse
Affiliation(s)
| | | | | | - Jinfan Shao
- Colorectal Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital
| |
Collapse
|
2
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
3
|
Mondal K, Posa MK, Shenoy RP, Roychoudhury S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024; 13:1221. [PMID: 39056802 PMCID: PMC11274496 DOI: 10.3390/cells13141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of KRAS and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between KRAS and PIK3CA and between APC and KRAS in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Collapse
Affiliation(s)
- Koushik Mondal
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- Department of Cancer Immunology, SwasthyaNiketan Integrated Healthcare & Research Foundation, Koramangala, Bengaluru 560034, Karnataka, India
| | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur 302017, Rajasthan, India;
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Susanta Roychoudhury
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Chick RC, Ruff SM, Pawlik TM. Factors associated with prognosis and staging of intrahepatic cholangiocarcinoma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively rare but aggressive primary liver cancer with a poor prognosis. A number of established clinical and pathologic factors correlate with prognosis, and this is reflected in the American Joint Committee on Cancer (AJCC) 8th Edition staging manual. Researchers have identified areas for improvement in staging and prognostication of ICC using more nuanced tools, including serum biomarkers, molecular profiling, immunophenotyping, and multimodal prognostic scoring systems. These data have led to proposals of novel staging systems that attempt to improve the correlation between stage and prognosis. More accurate staging tools may aid in treatment decisions that are tailored to each individual patient, to maximize therapy for individuals most likely to benefit and to avoid unnecessary toxicity and decision regret in those for whom aggressive treatment is unlikely to alter outcomes. Artificial intelligence and machine learning may help researchers develop new models that predict outcomes with more accuracy and precision.
Collapse
|
5
|
Andraus W, Tustumi F, de Meira Junior JD, Pinheiro RSN, Waisberg DR, Lopes LD, Arantes RM, Rocha Santos V, de Martino RB, Carneiro D’Albuquerque LA. Molecular Profile of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2023; 25:461. [PMID: 38203635 PMCID: PMC10778975 DOI: 10.3390/ijms25010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively uncommon but highly aggressive primary liver cancer that originates within the liver. The aim of this study is to review the molecular profile of intrahepatic cholangiocarcinoma and its implications for prognostication and decision-making. This comprehensive characterization of ICC tumors sheds light on the disease's underlying biology and offers a foundation for more personalized treatment strategies. This is a narrative review of the prognostic and therapeutic role of the molecular profile of ICC. Knowing the molecular profile of tumors helps determine prognosis and support certain target therapies. The molecular panel in ICC helps to select patients for specific therapies, predict treatment responses, and monitor treatment responses. Precision medicine in ICC can promote improvement in prognosis and reduce unnecessary toxicity and might have a significant role in the management of ICC in the following years. The main mutations in ICC are in tumor protein p53 (TP53), Kirsten rat sarcoma virus (KRAS), isocitrate dehydrogenase 1 (IDH1), and AT-rich interactive domain-containing protein 1A (ARID1A). The rate of mutations varies significantly for each population. Targeting TP53 and KRAS is challenging due to the natural characteristics of these genes. Different stages of clinical studies have shown encouraging results with inhibitors of mutated IDH1 and target therapy for ARID1A downstream effectors. Fibroblast growth factor receptor 2 (FGFR2) fusions are an important target in patients with ICC. Immune checkpoint blockade can be applied to a small percentage of ICC patients. Molecular profiling in ICC represents a groundbreaking approach to understanding and managing this complex liver cancer. As our comprehension of ICC's molecular intricacies continues to expand, so does the potential for offering patients more precise and effective treatments. The integration of molecular profiling into clinical practice signifies the dawn of a new era in ICC care, emphasizing personalized medicine in the ongoing battle against this malignancy.
Collapse
Affiliation(s)
| | - Francisco Tustumi
- Department of Gastroenterology, Transplantation Unit, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peng J, Fang S, Li M, Liu Y, Liang X, Li Z, Chen G, Peng L, Chen N, Liu L, Xu X, Dai W. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci 2023; 18:20220652. [PMID: 37483430 PMCID: PMC10358752 DOI: 10.1515/biol-2022-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of this study is to investigate certain genetic features of intrahepatic cholangiocarcinoma (ICCA). A total of 12 eligible ICCA patients were enrolled, and tumor tissues from the patients were subjected to next-generation sequencing of a multi-genes panel. Tumor mutation burden (TMB), mutated genes, copy number variants (CNVs), and pathway enrichment analysis were performed. The median TMB was 2.76 Mutation/Mb (range, 0-36.62 Mutation/Mb) in ICCA patients. The top two most commonly mutated genes in ICCA were KRAS (33%) and TP53 (25%). The co-mutations of KRAS and TP53 were 16.7% (2/12) in ICCA patients. Notably, patient P6 with the highest TMB did not have KRAS and TP53 mutations. Additionally, TP53 and/or KRAS alterations were significantly associated with poor progression-free survival than those with wild type (1.4 months vs 18 months). DNA damage repair and homologs recombinant repair deficiencies were significantly associated with high TMB in ICCA cases. In conclusion, we found that certain genetic mutations of TP53 and KRAS could predict poor prognosis in ICCA patients.
Collapse
Affiliation(s)
- Jianbo Peng
- Foshan Traditional Chinese Medicine Hospital, Guangdong, 518000, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Meisheng Li
- Foshan First People’s Hospital, Guangdong, 518000, China
| | - Yuxin Liu
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zuobiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Gaohui Chen
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lijiao Peng
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Nianping Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lei Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
7
|
Testa U, Pelosi E, Castelli G. The clinical value of identifying genetic abnormalities that can be targeted in cholangiocarcinomas. Expert Rev Anticancer Ther 2023; 23:147-162. [PMID: 36654529 DOI: 10.1080/14737140.2023.2170878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
8
|
Testa U, Pelosi E, Castelli G. Cholangiocarcinoma: Molecular Abnormalities and Cells of Origin. Technol Cancer Res Treat 2023; 22:15330338221128689. [PMID: 36872875 PMCID: PMC9989414 DOI: 10.1177/15330338221128689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| |
Collapse
|