1
|
Jacob A, He J, Peck A, Jamil A, Bunya V, Alexander JJ, Ambrus JL. Metabolic changes during evolution of Sjögren's in both an animal model and human patients. Heliyon 2025; 11:e41082. [PMID: 39801970 PMCID: PMC11720936 DOI: 10.1016/j.heliyon.2024.e41082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Sjögren's (SS) involves salivary and lacrimal gland dysfunction. These studies examined metabolic profiles in the B6. Il14α transgene mouse model of SS and a cohort of human SS patients at different stages of disease. In B6. Il14α mice, products of glucose and fatty acid were common at 6 months of age, while products of amino acid metabolism were common at 12 months of age. Treating B6. Il14α mice with the glycolysis inhibitor 2-deoxyglucose from 6 to 10 months of age normalized salivary gland secretions, dacryoadenitis, hypergammaglobulinemia and physical performance, while treatment from 10 to 14 months of age failed to improve any of the clinical manifestations. Similarly, SS patients at an early stage of disease showed high glycolysis. SS patients with long-standing disease utilized predominantly amino acid metabolism, like B6. Il14α mice at 10-12 months of age. Additional studies are suggested to further define metabolic activities at the various disease stages.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital Beijing China, Beijing, China
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Ali Jamil
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Vatinee Bunya
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jessy J. Alexander
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
2
|
Zhou J, Xu Y, Wang H, Chen C, Wang K. Unveiling the mystery: Investigating the debate surrounding mitochondrial DNA copy number and Sjögren syndrome using Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40908. [PMID: 39686495 DOI: 10.1097/md.0000000000040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Numerous studies have investigated the relationship between mitochondrial DNA (mtDNA) copy number and Sjögren syndrome (SS). However, the conclusions remain inconclusive, with conflicting findings. The genome-wide association study summary statistics for mtDNA copy number were obtained from 2 sources: a cohort of 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the UK Biobank, and a dataset of 395,718 UK Biobank participants. Additionally, we obtained 2 sets of genome-wide association study summary statistics for SS through datasets from FinnGen and the UK Biobank, involving a total of 809,836 participants. Furthermore, we conducted a two-sample bidirectional Mendelian randomization analysis, primarily utilizing the inverse variance weighted method, complemented by 4 other validation methods, to explore the association between mtDNA copy number and SS. Following our comprehensive investigation, no discernible causal relationship was identified between mtDNA copy number and SS in either the training or validation cohorts (inverse variance weighted, P > .05). Similarly, the reverse Mendelian randomization analysis yielded negative results (inverse variance weighted, P > .05). Furthermore, all analyses indicated an absence of horizontal pleiotropy or heterogeneity. Our analysis revealed no causal relationship between mtDNA copy number and SS.
Collapse
Affiliation(s)
- Jie Zhou
- The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yixin Xu
- The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Haitao Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chao Chen
- The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Kun Wang
- The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
3
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
4
|
Zhang J, Peng C, Xu S, Zhao Y, Zhang X, Zhang S, Guo Z. Mitochondrial displacement loop region single nucleotide polymorphisms and mitochondrial DNA copy number associated with risk of ankylosing spondylitis. Int J Rheum Dis 2023; 26:2157-2162. [PMID: 37592897 DOI: 10.1111/1756-185x.14876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
AIM The pathogenesis of ankylosing spondylitis (AS) seems to be associated with genetics, the environment, heredity, and oxidative stress. Single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) region of mitochondrial DNA (mtDNA) and mtDNA copy number were investigated for their correlation with AS patients. METHODS This study included 83 AS patients and 100 healthy controls from the Second Hospital of Hebei Medical University. DNAs were extracted from blood samples for polymerase chain reaction analysis and quantitative real-time polymerase chain reaction analysis. Plasma reactive oxygen species (ROS) levels were measured by fluorescent probe technology. RESULTS The distribution frequencies of the minor alleles of nucleotides 16304C (p = .037), 16311C (p = .027), and 152C (p = .034) were remarkably higher in AS patients than in healthy controls, which indicated that the16304C, 16311C, and 152C alleles were correlated with an increased risk of AS. Simultaneously, mtDNA copy number was statistically higher in patients with AS compared with controls (1.450 ± 0.876 versus 0.835 ± 0.626, p < .001). We also observed an increased ROS generation in AS patients compared with controls (27 066.169 ± 18 364.819 versus 14 758.330 ± 5854.946, p < .001) subsequently. In addition, the AS susceptible SNP 16311C is associated with high ROS levels (35 065.177 ± 26 999.934 vs. 25 005.818 ± 14 999.495, p = .043). CONCLUSION Our study demonstrated that SNPs in the mtDNA D-loop could be AS risk biomarkers with the potential to promote oxidative stress levels; mtDNA copy number-induced mitochondrial dysfunction may also be involved in AS pathogenesis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenxing Peng
- Department of Immunology and Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Xu
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shasha Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Dong Z, Wu L, Hong H. Mitochondrial Dysfunction in the Pathogenesis and Treatment of Oral Inflammatory Diseases. Int J Mol Sci 2023; 24:15483. [PMID: 37895162 PMCID: PMC10607498 DOI: 10.3390/ijms242015483] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oral inflammatory diseases (OIDs) include many common diseases such as periodontitis and pulpitis. The causes of OIDs consist microorganism, trauma, occlusal factors, autoimmune dis-eases and radiation therapy. When treated unproperly, such diseases not only affect oral health but also pose threat to people's overall health condition. Therefore, identifying OIDs at an early stage and exploring new therapeutic strategies are important tasks for oral-related research. Mitochondria are crucial organelles for many cellular activities and disruptions of mitochondrial function not only affect cellular metabolism but also indirectly influence people's health and life span. Mitochondrial dysfunction has been implicated in many common polygenic diseases, including cardiovascular and neurodegenerative diseases. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development and progression of OIDs and its associated systemic diseases. In this review, we elucidated the critical insights into mitochondrial dysfunction and its involvement in the inflammatory responses in OIDs. We also summarized recent research progresses on the treatment of OIDs targeting mitochondrial dysfunction and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Liping Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hong Hong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
6
|
De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of Mitochondrial DNA Copy Number and Increased Expression Levels of Mitochondrial Dynamics-Related Genes in Sjögren's Syndrome. Biomedicines 2022; 10:2699. [PMID: 36359219 PMCID: PMC9687724 DOI: 10.3390/biomedicines10112699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/26/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune multifactorial disease characterized by inflammation and lymphocytic infiltration of the exocrine glands. Several studies have highlighted the involvement of oxidative stress in this pathology, suggesting that it could induce mitochondrial dysfunctions. Mitochondria could have a role in inflammatory and immune processes. Since the mitochondrial DNA (mtDNA) copy number could change in response to physiological or environmental stimuli, this study aimed to evaluate possible alterations in the mtDNA copy number in SS. We have analyzed the amount of mtDNA in the peripheral blood of 74 SS patients and 61 healthy controls by qPCR. Then, since mitochondrial fusion and fission play a crucial role in maintaining the number of mitochondria, we investigated the expression variability of the genes most commonly involved in mitochondrial dynamics in a subgroup of SS patients and healthy controls. Interestingly, we observed a highly significant decrease in mtDNA copies in the SS patients compared to healthy controls (p = 1.44 × 10-12). Expression levels of mitochondrial fission factor (MFF), mitofusin-1 (MFN1), and mitochondrial transcription factor A (TFAM) genes were analyzed, showing a statistically significant increase in the expression of MFF (p = 0.003) and TFAM (p = 0.022) in the SS patients compared to healthy controls. These results give further insight into the possible involvement of mitochondrial dysfunctions in SS disease.
Collapse
Affiliation(s)
- Giada De Benedittis
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Latini
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Colafrancesco
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Roberta Priori
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Carlo Perricone
- Rheumatology Department of Medicine, University of Perugia, Piazzale Giorgio Menghini 1, 06129 Perugia, Italy
| | - Lucia Novelli
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Borgiani
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
7
|
Targeted Mitochondrial Epigenetics: A New Direction in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23179703. [PMID: 36077101 PMCID: PMC9456144 DOI: 10.3390/ijms23179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial epigenetic alterations are closely related to Alzheimer’s disease (AD), which is described in this review. Reports of the alteration of mitochondrial DNA (mtDNA) methylation in AD demonstrate that the disruption of the dynamic balance of mtDNA methylation and demethylation leads to damage to the mitochondrial electron transport chain and the obstruction of mitochondrial biogenesis, which is the most studied mitochondrial epigenetic change. Mitochondrial noncoding RNA modifications and the post-translational modification of mitochondrial nucleoproteins have been observed in neurodegenerative diseases and related diseases that increase the risk of AD. Although there are still relatively few mitochondrial noncoding RNA modifications and mitochondrial nuclear protein post-translational modifications reported in AD, we have reason to believe that these mitochondrial epigenetic modifications also play an important role in the AD process. This review provides a new research direction for the AD mechanism, starting from mitochondrial epigenetics. Further, this review summarizes therapeutic approaches to targeted mitochondrial epigenetics, which is the first systematic summary of therapeutic approaches in the field, including folic acid supplementation, mitochondrial-targeting antioxidants, and targeted ubiquitin-specific proteases, providing a reference for therapeutic targets for AD.
Collapse
|