1
|
Sahu A, Rangari SK, Naik YD, Jyotish A, Pandey MK, Varshney RK, Thudi M, Punnuri SM. Consensus genomic regions and key genes for biotic, abiotic and key nutritional traits identified using meta- QTL analysis in peanut. FRONTIERS IN PLANT SCIENCE 2025; 16:1539641. [PMID: 40303861 PMCID: PMC12038908 DOI: 10.3389/fpls.2025.1539641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025]
Abstract
Peanut (Arachis hypogaea L.), a key oilseed crop in the U.S., plays a significant role in agriculture and the economy but faces challenges from biotic and abiotic stresses, including aflatoxin contamination caused by Aspergillus flavus and A. parasiticus. Despite many large-effect QTLs identified for yield and key traits, their use in breeding is limited by unfavorable genetic interactions. To overcome this, we aimed to identify consensus genomic regions and candidate genes linked to key traits by analyzing QTL data from 30 independent studies conducted over the past 12 years, focusing on biotic, abiotic, aflatoxin, morphological, nutritional, phenological, and yield-associated traits. Using genetic map information, we constructed consensus maps and performed a meta-analysis on 891 QTLs, leading to the identification of 70 Meta-QTLs (MQTLs) with confidence intervals ranging from 0.07 to 9.63 cM and an average of 2.33 cM. This reduction in confidence intervals enhances the precision of trait mapping, making the identified MQTLs more applicable for breeding purposes. Furthermore, we identified key genes associated with aflatoxin resistance in MQTL5.2 (serine/threonine-protein kinase, BOI-related E3 ubiquitin-protein ligase), MQTL5.3, MQTL7.3, and MQTL13.1. Similarly, for yield-related traits in MQTL3.1-MQTL3.4 (mitogen-activated protein kinase, auxin response factor), MQTL11.2 (MADS-box protein, squamosa promoter-binding protein), and MQTL14.1. Genes related to oil composition within MQTL5.2 (fatty-acid desaturase FAD2, linoleate 9S-lipoxygenase), MQTL9.3, MQTL19.1 (acyl-CoA-binding protein, fatty acyl-CoA reductase FAR1), MQTL19.4, and MQTL19.5. Nutritional traits like iron and zinc content are linked to MQTL1.1 (probable methyltransferase, ferredoxin C), MQTL10.1, and MQTL12.1. These regions and genes serve as precise targets for marker-assisted breeding to enhance peanut yield, resilience, and quality.
Collapse
Affiliation(s)
- Aakash Sahu
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Sagar Krushnaji Rangari
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Anjali Jyotish
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Rajeev K. Varshney
- Western Australian (WA) State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Mahendar Thudi
- College of Agriculture, Family Sciences and Technology, 1005 State University Dr, Fort Valley State University (FVSU), Fort Valley, GA, United States
- Centre for Crop Health, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Somashekhar M. Punnuri
- College of Agriculture, Family Sciences and Technology, 1005 State University Dr, Fort Valley State University (FVSU), Fort Valley, GA, United States
| |
Collapse
|
2
|
Li L, Zhang D, Zhang Z, Zhang B. CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends Biotechnol 2025; 43:773-789. [PMID: 39362812 DOI: 10.1016/j.tibtech.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Improving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components. 'CRISPRized' oil crops will have broad applications both in industry (e.g., as biofuels) and in daily human life.
Collapse
Affiliation(s)
- Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
3
|
Sebiani-Calvo A, Hernández-Soto A, Hensel G, Gatica-Arias A. Crop genome editing through tissue-culture-independent transformation methods. Front Genome Ed 2024; 6:1490295. [PMID: 39703881 PMCID: PMC11655202 DOI: 10.3389/fgeed.2024.1490295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel in vitro tissue culture methodologies for efficient plant genetic transformation. In-planta methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement. The in-planta transformation methods can be categorized under the definition of means of plant genetic transformation with no or minimal tissue culture steps meeting the conditions for minimal steps: short duration with a limited number of transfers, high technical simplicity, limited list of hormones, and that the regeneration does not undergo callus development. In this review, we analyzed over 250 articles. We identified studies that follow an in-planta transformation methodology for delivering CRISPR/Cas9 components focusing on crop plants, as model species have been previously reviewed in detail. This approach has been successfully applied for genome editing in crop plants: camelina, cotton, lemon, melon, orange, peanut, rice, soybean, and wheat. Overall, this study underscores the importance of in-planta methodologies in overcoming the limitations of tissue culture and advancing the field of plant genome editing.
Collapse
Affiliation(s)
- Alejandro Sebiani-Calvo
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Alejandro Hernández-Soto
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Cartago, Costa Rica
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute for Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrés Gatica-Arias
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, Patil GB, Puppala N, Janga MR. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1759-1775. [PMID: 39687700 PMCID: PMC11646254 DOI: 10.1007/s12298-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
Collapse
Affiliation(s)
- Sachin Phogat
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Sriharsha V. Lankireddy
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Saikrishna Lekkala
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Varsha C. Anche
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762 USA
| | | | - Gunvant B. Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Naveen Puppala
- New Mexico State University Agricultural Science Center at Clovis, Clovis, 88101 USA
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| |
Collapse
|
5
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Zhou L, Wu Q, Yang Y, Li Q, Li R, Ye J. Regulation of Oil Biosynthesis and Genetic Improvement in Plants: Advances and Prospects. Genes (Basel) 2024; 15:1125. [PMID: 39336716 PMCID: PMC11431182 DOI: 10.3390/genes15091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Triglycerides are the main storage form of oil in plant seeds. Both fatty acids and triglycerides possess important functions in the process of plant growth and development. To improve the seed oil content and improve its fatty acid composition, this paper analyzed the research progress on the oil regulation and synthesis metabolism process of plant seeds and summarized the strategies for the improvement of plant seed oil: (a) To regulate carbon distribution by inhibiting the expression of genes encoding key enzymes, allocating carbon sources into the protein synthesis pathway, and enhancing the expression of key genes encoding key enzymes, leading carbon sources into the synthesis pathway of fatty acids; (b) To intervene in lipid synthesis by promoting the biosynthesis of fatty acids and improving the expression level of key genes encoding enzymes in the triacylglycerol (TAG) assembly process; (c) To improve seed oil quality by altering the plant fatty acid composition and regulating the gene expression of fatty acid desaturase, as well as introducing an exogenous synthesis pathway of long chain polyunsaturated fatty acids; (d) To regulate the expression of transcription factors for lipid synthesis metabolism to increase the seed oil content. In addition, this article reviews the key enzymes involved in the biosynthesis of plant fatty acids, the synthesis of triacylglycerol, and the regulation process. It also summarizes the regulatory roles of transcription factors such as WRI, LEC, and Dof on the key enzymes during the synthesis process. This review holds significant implications for research on the genetic engineering applications in plant seed lipid metabolism.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
7
|
Kapoor C, Anamika, Mukesh Sankar S, Singh SP, Singh N, Kumar S. Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet. PLANTA 2024; 259:155. [PMID: 38750378 DOI: 10.1007/s00425-024-04423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.
Collapse
Affiliation(s)
- Chandan Kapoor
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anamika
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mukesh Sankar
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - S P Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
8
|
Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, Yogendra K. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. Funct Integr Genomics 2024; 24:57. [PMID: 38478115 DOI: 10.1007/s10142-024-01336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
The CRISPR/Cas9 technology, renowned for its ability to induce precise genetic alterations in various crop species, has encountered challenges in its application to grain legume crops such as pigeonpea and groundnut. Despite attempts at gene editing in groundnut, the low rates of transformation and editing have impeded its widespread adoption in producing genetically modified plants. This study seeks to establish an effective CRISPR/Cas9 system in pigeonpea and groundnut through Agrobacterium-mediated transformation, with a focus on targeting the phytoene desaturase (PDS) gene. The PDS gene is pivotal in carotenoid biosynthesis, and its disruption leads to albino phenotypes and dwarfism. Two constructs (one each for pigeonpea and groundnut) were developed for the PDS gene, and transformation was carried out using different explants (leaf petiolar tissue for pigeonpea and cotyledonary nodes for groundnut). By adjusting the composition of the growth media and refining Agrobacterium infection techniques, transformation efficiencies of 15.2% in pigeonpea and 20% in groundnut were achieved. Mutation in PDS resulted in albino phenotype, with editing efficiencies ranging from 4 to 6%. Sequence analysis uncovered a nucleotide deletion (A) in pigeonpea and an A insertion in groundnut, leading to a premature stop codon and, thereby, an albino phenotype. This research offers a significant foundation for the swift assessment and enhancement of CRISPR/Cas9-based genome editing technologies in legume crops.
Collapse
Affiliation(s)
- Kalyani Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Harika Gadeela
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Wricha Tyagi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
9
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
10
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Rauf S, Fatima S, Ortiz R. Modification of Fatty Acid Profile and Oil Contents Using Gene Editing in Oilseed Crops for a Changing Climate. GM CROPS & FOOD 2023; 14:1-12. [PMID: 37551783 PMCID: PMC10761075 DOI: 10.1080/21645698.2023.2243041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Mutation breeding based on various chemical and physical mutagens induces and disrupts non-target loci. Hence, large populations were required for visual screening, but desired plants were rare and it was a further laborious task to identify desirable mutants. Generated mutant had high defect due to non-targeted mutation, with poor agronomic performance. Mutation techniques were augmented by targeted induced local lesions in genome (TILLING) facilitating the selection of desirable germplasm. On the other hand, gene editing through CRISPR/Cas9 allows knocking down genes for site-directed mutation. This handy technique has been exploited for the modification of fatty acid profile. High oleic acid genetic stocks were obtained in a broad range of crops. Moreover, genes involved in the accumulation of undesirable seed components such as starch, polysaccharide, and flavors were knocked down to enhance seed quality, which helps to improve oil contents and reduces the anti-nutritional component.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Seerat Fatima
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
12
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
14
|
Du P, Deng Q, Wang W, Garg V, Lu Q, Huang L, Wang R, Li H, Huai D, Chen X, Varshney RK, Hong Y, Liu H. scRNA-seq Reveals the Mechanism of Fatty Acid Desaturase 2 Mutation to Repress Leaf Growth in Peanut ( Arachis hypogaea L.). Cells 2023; 12:2305. [PMID: 37759528 PMCID: PMC10527976 DOI: 10.3390/cells12182305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty Acid Desaturase 2 (FAD2) controls the conversion of oleic acids into linoleic acids. Mutations in FAD2 not only increase the high-oleic content, but also repress the leaf growth. However, the mechanism by which FAD2 regulates the growth pathway has not been elucidated in peanut leaves with single-cell resolution. In this study, we isolated fad2 mutant leaf protoplast cells to perform single-cell RNA sequencing. Approximately 24,988 individual cells with 10,249 expressed genes were classified into five major cell types. A comparative analysis of 3495 differentially expressed genes (DEGs) in distinct cell types demonstrated that fad2 inhibited the expression of the cytokinin synthesis gene LOG in vascular cells, thereby repressing leaf growth. Further, pseudo-time trajectory analysis indicated that fad2 repressed leaf cell differentiation, and cell-cycle evidence displayed that fad2 perturbed the normal cell cycle to induce the majority of cells to drop into the S phase. Additionally, important transcription factors were filtered from the DEG profiles that connected the network involved in high-oleic acid accumulation (WRKY6), activated the hormone pathway (WRKY23, ERF109), and potentially regulated leaf growth (ERF6, MYB102, WRKY30). Collectively, our study describes different gene atlases in high-oleic and normal peanut seedling leaves, providing novel biological insights to elucidate the molecular mechanism of the high-oleic peanut-associated agronomic trait at the single-cell level.
Collapse
Affiliation(s)
- Puxuan Du
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Wenyi Wang
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China;
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University (MU), Murdoch, WA 6150, Australia; (V.G.); (R.K.V.)
| | - Qing Lu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Haifen Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University (MU), Murdoch, WA 6150, Australia; (V.G.); (R.K.V.)
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou 510640, China; (P.D.); (Q.D.); (Q.L.); (L.H.); (R.W.); (H.L.); (X.C.)
| |
Collapse
|
15
|
Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. PLANTA 2023; 258:36. [PMID: 37395789 DOI: 10.1007/s00425-023-04187-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MAIN CONCLUSION This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.
Collapse
Affiliation(s)
- Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Guangdong Zhao
- College of Life Sciences, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Lin Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xiaoming Cai
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xuejiao Yuan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
17
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
18
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|