1
|
Wormuth C, Papazoglou A, Henseler C, Ehninger D, Broich K, Haenisch B, Hescheler J, Köhling R, Weiergräber M. A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Neural Plast 2024; 2024:9946769. [PMID: 39104708 PMCID: PMC11300100 DOI: 10.1155/2024/9946769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 post partum (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca2+ channel Cav3.2 and the auxiliary subunits β 1 and β 2, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Cav2.1, Cav2.3, M1, and M3) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.
Collapse
Affiliation(s)
- Carola Wormuth
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Translational BiogerontologyGerman Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Center for Translational MedicineMedical FacultyUniversity of Bonn, Bonn, Germany
| | - Jürgen Hescheler
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of PhysiologyUniversity of Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Marco Weiergräber
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
2
|
Ohya S, Kito H, Kajikuri J, Yamaguchi Y, Matsui M. Transcriptional Up-Regulation of FBXW7 by K Ca1.1 K + Channel Inhibition through the Nrf2 Signaling Pathway in Human Prostate Cancer LNCaP Cell Spheroid Model. Int J Mol Sci 2024; 25:6019. [PMID: 38892210 PMCID: PMC11172474 DOI: 10.3390/ijms25116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.); (Y.Y.); (M.M.)
| | | | | | | | | |
Collapse
|
3
|
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Noncoding RNA 2024; 10:18. [PMID: 38525737 PMCID: PMC10961783 DOI: 10.3390/ncrna10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Sara Carpi
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Wang Q, Shi X, Li PP, Gao L, Zhou Y, Li L, Ye H, Fu X, Li P. microRNA profilings identify plasma biomarkers and targets associated with pediatric epilepsy patients. Pediatr Res 2024; 95:996-1008. [PMID: 37884644 PMCID: PMC10920196 DOI: 10.1038/s41390-023-02864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although previous studies show that microRNAs (miRNAs) can potentially be used as diagnostic markers for epilepsy, there are very few analyses of pediatric epilepsy patients. METHODS miRNA profiles using miRNA-seq was performed on plasma samples from 14 pediatric epileptic patients and 14 healthy children. miRNA miR-27a-3p that were significantly changed between two groups were further evaluated. The potential target genes of miR-27a-3p were screened through unbiased mRNA-seq and further validated using Western blot and immunohistochemistry in HEK-293T cells and in the brains of mice with epilepsy induced by lithium chloride-pilocarpine. RESULTS We found 82 upregulated and 76 downregulated miRNAs in the plasma from pediatric patients compared with controls (p < 0.01), of which miR-27a-3p exhibited a very low p value (p < 0.0001) and validated in additional plasma samples. Two genes, GOLM1 and LIMK1, whose mRNA levels were decreased (p < 0.001) with the increase of miR-27a-3p were further validated in both HEK-293T cells and in epileptic mice. CONCLUSIONS MiR-27a-3p exhibits potential as a diagnostic and therapeutic marker for epilepsy. We postulate that additional studies on the downstream targets of miR-27a-3p will unravel its roles in epileptogenesis or disease progression. IMPACT A total of 158 differentially expressed miRNAs were detected in plasma between epileptic and control children. Plasma miR-27a-3p was one of the miRNAs with a low p value. GOLM1 and LIMK1 were validated as downstream target genes of miR-27a-3p. miR-27a-3p has potential as a diagnostic and therapeutic marker for epilepsy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Xulai Shi
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Ping-Ping Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Li Gao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yueyuan Zhou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Hao Ye
- School of life Science and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| | - Peijun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Müller S, Kartheus M, Hendinger E, Hübner DC, Schnell E, Rackow S, Bertsche A, Köhling R, Kirschstein T. Persistent Kv7.2/7.3 downregulation in the rat pilocarpine model of mesial temporal lobe epilepsy. Epilepsy Res 2024; 200:107296. [PMID: 38219422 DOI: 10.1016/j.eplepsyres.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Mutations within the Kv7.2 and Kv7.3 genes are well described causes for genetic childhood epilepsies. Knowledge on these channels in acquired focal epilepsy, especially in mesial temporal lobe epilepsy (mTLE), however, is scarce. Here, we used the rat pilocarpine model of drug-resistant mTLE to elucidate both expression and function by quantitative polymerase-chain reaction, immunohistochemistry, and electrophysiology, respectively. We found transcriptional downregulation of Kv7.2 and Kv7.3 as well as reduced Kv7.2 expression in epileptic CA1. Consequences were altered synaptic transmission, hyperexcitability which consisted of epileptiform afterpotentials, and increased susceptibility to acute GABAergic disinhibition. Importantly, blocking Kv7 channels with XE991 increased hyperexcitability in control tissue, but not in chronically epileptic tissue suggesting that the Kv7 deficit had precluded XE991 effects in this tissue. Conversely, XE991 resulted in comparable reduction of the paired-pulse ratio in both experimental groups implying preserved presynaptic Kv7.2 function of Schaffer collateral terminals. Consistent with Kv7.2/7.3 downregulation, the Kv7.3 channel opener β-hydroxybutyrate failed to mitigate hyperexcitability. Our findings demonstrate that compromised Kv7 function is not only relevant in genetic epilepsy, but also in acquired focal epilepsy. Moreover, they help explain reduced anti-seizure efficacy of Kv7 channel openers in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Steffen Müller
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Mareike Kartheus
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Elisabeth Hendinger
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | | | - Emma Schnell
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Astrid Bertsche
- Department Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Greifswald, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University Medicine Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University Medicine Rostock, Germany.
| |
Collapse
|
6
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
7
|
Bertoli G, Fortunato F, Cava C, Manna I, Gallivanone F, Labate A, Panio A, Porro D, Gambardella A. Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study. Curr Neuropharmacol 2024; 22:2422-2432. [PMID: 39403059 PMCID: PMC11451323 DOI: 10.2174/1570159x22666240516145823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. METHODS So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. RESULTS Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. CONCLUSION We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.
Collapse
Affiliation(s)
- Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- IUSS, Scuola Universitaria Superiore Pavia, Pv, Italy
| | - Ida Manna
- IBFM-CNR, Section of Germaneto, Catanzaro, Italy
| | - Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Italy
| | - Antonella Panio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| |
Collapse
|
8
|
Zhang X, Ma Y, Zhou F, Zhang M, Zhao D, Wang X, Yang T, Ma J. Identification of miRNA-mRNA regulatory network associated with the glutamatergic system in post-traumatic epilepsy rats. Front Neurol 2022; 13:1102672. [PMID: 36619916 PMCID: PMC9822725 DOI: 10.3389/fneur.2022.1102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glutamate is one of the most important excitatory neurotransmitters in the mammalian brain and is involved in a variety of neurological disorders. Increasing evidence also shows that microRNA (miRNA) and mRNA pairs are engaged in a variety of pathophysiological processes. However, the miRNA and mRNA pairs that affect the glutamatergic system in post-traumatic epilepsy (PTE) remain unknown. Methods PTE rats were induced by injecting 0.1 mol/L, 1 μL/min FeCl2 solution. Behavioral scores and EEG monitoring were used to evaluate whether PTE was successfully induced. RNA-seq was used to obtain mRNA and miRNA expression profiles. Bioinformatics analysis was performed to screen differentially expressed mRNAs and miRNAs associated with the glutamatergic system and then predict miRNA-mRNA interaction pairs. Real-time quantitative reverse transcription PCR was used to further validate the expression of the differential miRNAs and mRNAs. The microRNA-mRNA was subject to the Pearson correlation analysis. Results Eight of the 91 differentially expressed mRNAs were associated with the glutamatergic system, of which six were upregulated and two were downregulated. Forty miRNAs were significantly differentially expressed, with 14 upregulated and 26 downregulated genes. The predicted miRNA-mRNA interaction network shows that five of the eight differentially expressed mRNAs associated with the glutamatergic system were targeted by multiple miRNAs, including Slc17a6, Mef2c, Fyn, Slc25a22, and Shank2, while the remaining three mRNAs were not targeted by any miRNAs. Of the 40 differentially expressed miRNAs, seven miRNAs were found to have multiple target mRNAs associated with the glutamatergic system. Real-time quantitative reverse transcription PCR validation and Pearson correlation analysis were performed on these seven targeted miRNAs-Slc17a6, Mef2c, Fyn, Slc25a22, and Shank2-and six additional miRNAs selected from the literature. Real-time quantitative reverse transcription PCR showed that the expression levels of the mRNAs and miRNAs agreed with the predictions in the study. Among them, the miR-98-5p-Slc17a6, miR-335-5p-Slc17a6, miR-30e-5p-Slc17a6, miR-1224-Slc25a22, and miR-211-5p-Slc25a22 pairs were verified to have negative correlations. Conclusions Our results indicate that miRNA-mRNA interaction pairs associated with the glutamatergic system are involved in the development of PTE and have potential as diagnostic biomarkers and therapeutic targets for PTE.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- College of Biological Science, China Agricultural University, Beijing, China,Chinese Institute for Brain Research, Beijing, China
| | - Fengjuan Zhou
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Dong Zhao
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Collaborative Innovation Center of Judicial Civilization, Beijing, China,Tiantong Yang ✉
| | - Jun Ma
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China,Department of Radiology, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China,*Correspondence: Jun Ma ✉
| |
Collapse
|
9
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
10
|
Wang ZB, Qu J, Yang ZY, Liu DY, Jiang SL, Zhang Y, Yang ZQ, Mao XY, Liu ZQ. Integrated Analysis of Expression Profile and Potential Pathogenic Mechanism of Temporal Lobe Epilepsy With Hippocampal Sclerosis. Front Neurosci 2022; 16:892022. [PMID: 35784838 PMCID: PMC9243442 DOI: 10.3389/fnins.2022.892022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the potential pathogenic mechanism of temporal lobe epilepsy with hippocampal sclerosis (TLE+HS) by analyzing the expression profiles of microRNA/ mRNA/ lncRNA/ DNA methylation in brain tissues. Methods Brain tissues of six patients with TLE+HS and nine of normal temporal or parietal cortices (NTP) of patients undergoing internal decompression for traumatic brain injury (TBI) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60K. The cDNA was labeled and hybridized to the Agilent LncRNA+mRNA Human Gene Expression Microarray V3.0,4 × 180K. For methylation detection, the DNA was labeled and hybridized to the Illumina 450K Infinium Methylation BeadChip. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change >2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. BrainSpan database was used to screen for signatures that were not differentially expressed in normal human hippocampus and cortex (data from BrainSpan), but differentially expressed in TLE+HS’ hippocampus and NTP’ cortex (data from our cohort). The strategy “Guilt by association” was used to predict the prospective roles of each important hub mRNA, miRNA, or lncRNA. Results A significantly negative correlation (r < −0.5) was found between 116 pairs of microRNA/mRNA, differentially expressed in six patients with TLE+HS and nine of NTP. We examined this regulation network’s intersection with target gene prediction results and built a lncRNA-microRNA-Gene regulatory network with structural, and functional significance. Meanwhile, we found that the disorder of FGFR3, hsa-miR-486-5p, and lnc-KCNH5-1 plays a key vital role in developing TLE+HS.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ding-Yang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Zhi-Quan Yang,
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- Xiao-Yuan Mao,
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu,
| |
Collapse
|