1
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Abitew YA, Reyer H, Hadlich F, Oster M, Trakooljul N, Sommerfeld V, Rodehutscord M, Wimmers K, Ponsuksili S. Transcriptional responses to diets without mineral phosphorus supplementation in the jejunum of two high-yielding laying hen strains. Poult Sci 2024; 103:104484. [PMID: 39515113 PMCID: PMC11584914 DOI: 10.1016/j.psj.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorus (P) is an essential mineral for all forms of life including laying hens, playing a crucial role in growth and efficient egg production. Recent studies suggest that current P recommendations might exceed the physiological demand, leading to unnecessarily high P excretions. This study on Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens (n=80; 10 replicates per strain, production period, and dietary group) investigates transcriptional changes in the jejunum, a critical intestinal segment for mineral absorption, in response to a diet either without (P-) or with (P+) a mineral supplement from monocalcium phosphate, administered over a 4-week period during the transition (15-19 weeks) or onset of laying (20-24 weeks). DESeq2 analysis of RNA sequencing data revealed that most differentially expressed genes (DEGs) varied between strains and age groups, with less pronounced effects from dietary mineral P content. The 19-week-old LB hens showed a stronger response to dietary mineral P removal, with transcripts affiliated with increased adaptation of the metabolism and decreased immune pathway activation. The identified pathways such as folate biosynthesis and p53 signaling, potentially link altered energy and amino acid metabolism (2-oxocarboxylic acid and arginine). Interestingly, genes involved in calcium transport (CALB1) and cellular signaling (PRKCA, STEAP4) along with tight junctions (CLDN2) were affected by complete removal of mineral P supplements, suggesting a promoted intestinal mineral uptake. Transcriptional regulation in the jejunum in response to low dietary mineral content is strain-specific when the laying phase begins, which may contribute to a physiological Ca:P ratio.
Collapse
Affiliation(s)
- Yosef A Abitew
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; University of Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | | |
Collapse
|
3
|
Muhuitijiang B, Zhou J, Zhou R, Zhang Z, Yan G, Zheng Z, Zeng X, Zhu Y, Wu H, Gao R, Zhu T, Shi X, Tan W. Development and experimental validation of an M2 macrophage and platelet-associated gene signature to predict prognosis and immunotherapy sensitivity in bladder cancer. Cancer Sci 2024; 115:1417-1432. [PMID: 38422408 PMCID: PMC11093213 DOI: 10.1111/cas.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jiawei Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ranran Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiyong Zhang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guang Yan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaosong Zheng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiangbo Zeng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuanchao Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haowei Wu
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ruxi Gao
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Tianhang Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaojun Shi
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wanlong Tan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Iqbal MA, Hadlich F, Reyer H, Oster M, Trakooljul N, Murani E, Perdomo‐Sabogal A, Wimmers K, Ponsuksili S. RNA-Seq-based discovery of genetic variants and allele-specific expression of two layer lines and broiler chicken. Evol Appl 2023; 16:1135-1153. [PMID: 37360029 PMCID: PMC10286233 DOI: 10.1111/eva.13557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the selective breeding of broilers and layers have made poultry production one of the fastest-growing industries. In this study, a transcriptome variant calling approach from RNA-seq data was used to determine population diversity between broilers and layers. In total, 200 individuals were analyzed from three different chicken populations (Lohmann Brown (LB), n = 90), Lohmann Selected Leghorn (LSL, n = 89), and Broiler (BR, n = 21). The raw RNA-sequencing reads were pre-processed, quality control checked, mapped to the reference genome, and made compatible with Genome Analysis ToolKit for variant detection. Subsequently, pairwise fixation index (F ST) analysis was performed between broilers and layers. Numerous candidate genes were identified, that were associated with growth, development, metabolism, immunity, and other economically significant traits. Finally, allele-specific expression (ASE) analysis was performed in the gut mucosa of LB and LSL strains at 10, 16, 24, 30, and 60 weeks of age. At different ages, the two-layer strains showed significantly different allele-specific expressions in the gut mucosa, and changes in allelic imbalance were observed across the entire lifespan. Most ASE genes are involved in energy metabolism, including sirtuin signaling pathways, oxidative phosphorylation, and mitochondrial dysfunction. A high number of ASE genes were found during the peak of laying, which were particularly enriched in cholesterol biosynthesis. These findings indicate that genetic architecture as well as biological processes driving particular demands relate to metabolic and nutritional requirements during the laying period shape allelic heterogeneity. These processes are considerably affected by breeding and management, whereby elucidating allele-specific gene regulation is an essential step towards deciphering the genotype to phenotype map or functional diversity between the chicken populations. Additionally, we observed that several genes showing significant allelic imbalance also colocalized with the top 1% of genes identified by the FST approach, suggesting a fixation of genes in cis-regulatory elements.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Henry Reyer
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Michael Oster
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Nares Trakooljul
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Eduard Murani
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
- Faculty of Agricultural and Environmental SciencesUniversity RostockRostockGermany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| |
Collapse
|
5
|
Ponsuksili S, Hadlich F, Perdomo-Sabogal A, Reyer H, Oster M, Trakooljul N, Iqbal MA, Schmucker S, Stefanski V, Roth C, Silva AC, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K. The dynamics of molecular, immune and physiological features of the host and the gut microbiome, and their interactions before and after onset of laying in two hen strains. Poult Sci 2022; 102:102256. [PMID: 36335740 PMCID: PMC9640326 DOI: 10.1016/j.psj.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Aggregation of data, including deep sequencing of mRNA and miRNA data in jejunum mucosa, abundance of immune cells, metabolites, or hormones in blood, composition of microbiota in digesta and duodenal mucosa, and production traits collected along the lifespan, provides a comprehensive picture of lifelong adaptation processes. Here, respective data from two laying hen strains (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) collected at 10, 16, 24, 30, and 60 wk of age were analyzed. Data integration revealed strain- and stage-specific biosignatures, including elements indicative of molecular pathways discriminating the strains. Although the strains performed the same, they differed in the activity of immunological and metabolic functions and pathways and showed specific gut-microbiota-interactions in different production periods. The study shows that both strains employ different strategies to acquire and maintain their capabilities under high performance conditions, especially during the transition phase. Furthermore, the study demonstrates the capacity of such integrative analyses to elucidate molecular pathways that reflect functional biodiversity. The bioinformatic reduction of the multidimensional data provides good guidance for further manual review of the data.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,Corresponding author:
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| |
Collapse
|