1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Yeh PS, Liu CT, Yu CY, Chang YC, Lin SY, Li YC, Luan YZ, Sung WW. Crebanine, an aporphine alkaloid, induces cancer cell apoptosis through PI3K-Akt pathway in glioblastoma multiforme. Front Pharmacol 2024; 15:1419044. [PMID: 38895635 PMCID: PMC11184677 DOI: 10.3389/fphar.2024.1419044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.
Collapse
Affiliation(s)
- Poh-Shiow Yeh
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Yu Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Chen Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Ren J, Yao X, Yang M, Cheng S, Wu D, Xu K, Li R, Zhang H, Zhang D. Kinesin Family Member-18A (KIF18A) Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:1274-1286. [PMID: 38446308 PMCID: PMC11026273 DOI: 10.1007/s10620-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Han Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- , Room 706, Chongyi Building, 1 Yixue Yuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
4
|
Liu Y, Sun M, Zhang B, Zhao W. KIF18A improves migration and invasion of colorectal cancer (CRC) cells through inhibiting PTEN signaling. Aging (Albany NY) 2023; 15:9182-9192. [PMID: 37708299 PMCID: PMC10522371 DOI: 10.18632/aging.205027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Kinesin family member 18A (KIF18A) is involved in the development of a variety of human malignancies. However, we have never known the influences of KIF18A on colorectal cancer (CRC). The study is designed to investigate the effect and molecular mechanism of KIF18A on the progression of colorectal cancer. METHODS We have not only analyzed the database using GEO, but have examined the effect of KIF18A on the development of CRC by subcutaneous tumorigenesis in nude mice. HE staining was used to observe tumor size. Besides, we make use of Western blotting to monitor the expression of related proteins. In addition, the scratch wound assay and Transwell assay were conducted to detect the effect of KIF18A on the migration and invasion of CRC cells. RESULTS The results of GEO database analysis suggested that KIF18A had a positive correlation with the growth of CRC. The results of subcutaneous tumorigenesis and HE staining in nude mice explained that KIF18A promoted the progression of CRC. Both scratch wound assay and Transwell indicated that the migration and invasion of CRC could be promoted by KIF18A. The results of Western blot illustrated that KIF18A could forward the migration and invasion of CRC cells, and inhibit PTEN, which promoted the activation of PI3K/Akt signaling pathway, thus bringing about the expression of MMP2 and MMP9. CONCLUSION In conclusion, KIF18A can further the activation of PI3K/Akt signaling pathway by means of inhibiting PTEN transcription. Therefore, it is inferred that that KIF18A is a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
5
|
Yang J, Zhang Q, Yang Z, Shu J, Zhang L, Yao Y, Wang X, Liu X. KIF18A interacts with PPP1CA to promote the malignant development of glioblastoma. Exp Ther Med 2023; 25:154. [PMID: 36911368 PMCID: PMC9996083 DOI: 10.3892/etm.2023.11853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 02/19/2023] Open
Abstract
Glioblastoma (GBM), which has poor prognosis and low 5-year survival rate, is the most common primary central nervous system malignant tumour in adults. Kinesin family member 18A (KIF18A) plays an important role in multiple tumours and is potential therapeutic target for GBM. Therefore, the present study investigated the role of KIF18A in GBM. The expression level and survival prognosis of KIF18A and protein phosphatase 1 catalytic subunit α (PPP1CA) in GBM patients were analysed using the Chinese Glioma Genome Atlas (CGGA) database. Reverse transcription-quantitative PCR and western blot analysis were applied to measure the expression of KIF18A and PPP1CA in normal and GBM cell lines. KIF18A expression was inhibited through cell transfection with a KIF18A-targeting short hairpin RNA. Cell proliferation was detected with the Cell Counting Kit-8 assay. Flow cytometry was used to detect cell cycle changes. Transwell and wound healing assays were used to measure cell invasion and migration. Western blotting was utilized for the detection of invasion- and migration-related proteins MMP9 and MMP2. Biological General Repository for Interaction Datasets and GeneMANIA databases were used to analyse the interaction between KIF18A and PPP1CA. The correlation between PPP1CA and KIF18A was examined using data from the CGGA database. Immunoprecipitation was used to demonstrate the binding relationship between KIF18A and PPP1CA. PPP1CA was overexpressed using cell transfection technology and its mechanism was further examined. The results demonstrated that KIF18A was upregulated in GBM cells compared with normal microglia HMC3. Compared with that in sh-NC group, silencing of KIF18A reduced cell proliferation, induced G2/M cycle arrest and inhibited the migration and the invasion of A172 GBM cells by interacting with PPP1CA. In conclusion, KIF18A interacted with PPP1CA to promote the proliferation, cycle arrest, migration and invasion of GBM cells.
Collapse
Affiliation(s)
- Ji Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaorong Zhang
- Department of Neurosurgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Ziyuan Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiaming Shu
- Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Zhang
- Medical Graduate School of Nanchang University, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolang Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xianxian Liu
- Department of Neurosurgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|