1
|
Pei J, Liao Y, Bai X, Li M, Wang J, Li X, Zhang H, Sui L, Kong Y. Dysregulated GLUT1 results in the pathogenesis of preeclampsia by impairing the function of trophoblast cells. Sci Rep 2024; 14:23761. [PMID: 39390043 PMCID: PMC11467397 DOI: 10.1038/s41598-024-74489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a common placental-origin complication of pregnancy and a major cause of morbidity and mortality among pregnant women and fetuses. However, its pathogenesis has not been elucidated. Effective strategies for prevention, screening, and treatment are still lacking. Studies have indicated that dysfunction of placental trophoblast cells, such as impaired syncytialization, proliferation, and epithelial-mesenchymal transition processes, plays a crucial role in the development of PE. Glucose transporter 1 (GLUT1) is a key protein regulating glucose transport in placental tissues. However, the effect of GLUT1 on the function of trophoblast cells in PE is not well understood. In this study, we found that GLUT1 expression is reduced in PE placental tissues. GLUT1 promotes the syncytialization process by increasing the glucose uptake ability of BeWo cells. Additionally, GLUT1 promotes the proliferation, migration, and invasion capabilities of HTR-8/SVneo cells by regulating MAPK and PI3K/AKT signaling pathways. Overall, these findings provide a new insight into understanding the biological functions of GLUT1, clarifying the pathogenesis of PE, and identifying diagnostic and therapeutic targets for PE.
Collapse
Affiliation(s)
- Jingyuan Pei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Yangyou Liao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Xiaoxian Bai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Xiaotong Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Hongshuo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Linlin Sui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
2
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|