1
|
Dai Y, Wu Y, Zhao D, Cun Y. Whole-genome sequencing revealed genetic basis of diterpenoid alkaloid difference in Aconitum vilmorinianum. BMC PLANT BIOLOGY 2025; 25:184. [PMID: 39934663 PMCID: PMC11817038 DOI: 10.1186/s12870-025-06200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Aconitum is an important medicinal genus widely used in traditional Chinese medicine, which produces types of diterpenoid alkaloids (DA) among different species. We performed whole genome resequencing (WGS) research in Aconitum spp., and wish to find diterpenoid alkaloids related genetic variations. RESULTS In this study, we re-sequenced 150 Aconitum vilmorinianum (A. vilmorinianum) including 102 from the cultivation garden and 48 from the wild, as well as nine wild samples of Aconitum weixiense. The intra-population differentiation of A. vilmorinianum was detected by evolutionary tree and population structure inference. We identify 47 DA biosynthesis genes that might be highly associated with the specialization of DA based on whole-genome resequencing. Of 616 significant SNPs and 105 significant InDels among these genes could be developed as polymorphic molecular markers capable of effectively recognizing A. vilmorinianum from A. weixiense. Furthermore, the significant SNPs and InDels were almost homozygous alternates in A. weixiense, whereas they tended to be homozygous references in the A. vilmorinianum. CONCLUSIONS Our results discussed the difference in genetic background in A. vilmorinianum compared to A. weixiense and these high-quality DA biosynthesis-associated polymorphic locus provided useful genetic information for discrimination of A. vilmorinianum and could serve as a vehicle to study the mechanism of DA differentiation in Aconitum.
Collapse
Affiliation(s)
- Yi Dai
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yilei Wu
- Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, China
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China.
| | - Yupeng Cun
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
2
|
Jia X, Wei J, Chen Y, Zeng C, Deng C, Zeng P, Tang Y, Zhou Q, Huang Y, Zhu Q. Codon usage patterns and genomic variation analysis of chloroplast genomes provides new insights into the evolution of Aroideae. Sci Rep 2025; 15:4333. [PMID: 39910236 PMCID: PMC11799533 DOI: 10.1038/s41598-025-88244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Aroideae is an important subfamily of the Araceae family and contains many plants with medicinal and edible value. It is difficult to identify and classify Aroideae species accurately on the basis of morphology alone because of their polymorphic phenotypic traits. The chloroplast genome (CPG) is useful for studying on plant taxonomy and phylogeny, and the analysis of codon usage bias (CUB) in CPGs provides further insights into the intricate phylogenetic relationships among Aroideae. The results showed that the codon third position of the chloroplast genome coding sequence in Aroideae was rich in A and T, with a GC content of 37.91%. The ENC-plot and PR2-plot revealed that the codon usage bias of Aroideae was influenced by multiple factors, with natural selection as the dominant factor. Thirteen to twenty optimal codons ending in A/T were identified in 61 Aroideae species. Additionally, the comparative analysis of CPGs revealed that two single copy regions and non-coding regions were variable in Aroideae. Eight highly divergent regions (Pi > 0.064) were identified (ndhF, rpl32, ccsA, ndhE, ndhG, ndhF-rpl32, ccsA-ndhD, and ndhE-ndhG) , in which ndhE have the potential to serve as a reliable DNA marker to discriminate chloroplasts in Aroideae subfamily. Furthermore, the maximum likelihood-based phylogenetic trees constructed from complete chloroplast genomes and protein-coding sequences presented similar topologies. Principal component clustering analysis based on relative synonymous codon usage values (RSCUs) revealed that Calla was clearly deviated from Montrichardia and Anubias, and that Alocasia was closer to Colocasieae than to Arisaemateae. These findings suggest that the use of RSCU for clustering analysis could offer new theoretical support for species classification and evolution. Our research could provide a theoretical foundation for the chloroplast genetic engineering, taxonomy, and phylogenetic relationships of Aroideae chloroplasts.
Collapse
Affiliation(s)
- Xinbi Jia
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiaqi Wei
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuewen Chen
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chenghong Zeng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chan Deng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pengchen Zeng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yufei Tang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjin Huang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Qianglong Zhu
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Wang T, Rangji C, Liu W, Ma J, Zhou R, Leng L, Zhang Y. Multi-Omics on Traditional Medicinal Plant of the Genus Aconitum: Current Progress and Prospect. Molecules 2024; 30:118. [PMID: 39795175 PMCID: PMC11722372 DOI: 10.3390/molecules30010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Aconitum stands out among the Ranunculaceae family for its notable use as an ornamental and medicinal plant. Diterpenoid alkaloids (DAs), the characteristic compounds of Aconitum, have been found to have effective analgesic and anti-inflammatory effects. Despite their medicinal potential, the toxicity of most DAs restricts the direct use of Aconitum in traditional medicine, necessitating complex processing before use. The use of high-throughput omics allows for the investigation of Aconitum plant genetics, gene regulation, metabolic pathways, and growth and development. We have collected comprehensive information on the omics studies of Aconitum medicinal plants, encompassing genomics, transcriptomics, metabolomics, proteomics, and microbiomics, from internationally recognized electronic scientific databases such as Web of Science, PubMed, and CNKI. In light of this, we identified research gaps and proposed potential areas and key objectives for Aconitum omics research, aiming to establish a framework for quality improvement, molecular breeding, and a deeper understanding of specialized metabolite production in Aconitum plants.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cai Rangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenbin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruichen Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Lubna, Asaf S, Khan I, Jan R, Asif S, Bilal S, Kim KM, Al-Harrasi A. Genetic characterization and phylogenetic analysis of the Nigella sativa (black seed) plastome. Sci Rep 2024; 14:14509. [PMID: 38914674 PMCID: PMC11196742 DOI: 10.1038/s41598-024-65073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa's plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Ibrahim Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
5
|
Sun J, Sun Q, Li X, Li W, Li Y, Zhou Y, Hu Y. Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. PLANTS (BASEL, SWITZERLAND) 2024; 13:885. [PMID: 38592876 PMCID: PMC10976075 DOI: 10.3390/plants13060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
The classification system for the genus Aconitum is highly complex. It is also the subject of ongoing debate. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial herbs of the genus Aconitum. Dried roots of these two plants are used in traditional Chinese medicine. In this study, morphological observations and ISSR molecular markers were employed to discriminate between A. flavum and A. pendulum, with the objective of gaining insights into the interspecies classification of Aconitum. The pubescence on the inflorescence of A. flavum was found to be appressed, while that on the inflorescence of A. pendulum was spread. UPGMA (unweighted pair-group method with arithmetic average) cluster analysis, PCoA (principal coordinates analysis), and Bayesian structural analysis divided the 199 individuals (99 individuals from DWM population and 100 individuals from QHL population) into two main branches, which is consistent with the observations of the morphology of pubescence on the inflorescence. These analyses indicated that A. flavum and A. pendulum are distinct species. No diagnostic bands were found between the two species. Two primer combinations (UBC808 and UBC853) were ultimately selected for species identification of A. flavum and A. pendulum. This study revealed high levels of genetic diversity in both A. flavum (He = 0.254, I = 0.395, PPB = 95.85%) and A. pendulum (He = 0.291, I = 0.445, PPB = 94.58%). We may say, therefore, that ISSR molecular markers are useful for distinguishing A. flavum and A. pendulum, and they are also suitable for revealing genetic diversity and population structure.
Collapse
Affiliation(s)
- Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Sun
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Li
- Scientific Research and Popularization Base of Qinghai–Tibet Plateau Biology, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China;
| | - Yi Li
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
| | - Yubi Zhou
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
| | - Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (J.S.); (Q.S.); (X.L.); (Y.L.); (Y.Z.)
| |
Collapse
|
6
|
Zhang R, Xiang N, Qian C, Liu S, Zhao Y, Zhang G, Wei P, Li J, Yuan T. Comparative analysis of the organelle genomes of Aconitum carmichaelii revealed structural and sequence differences and phylogenetic relationships. BMC Genomics 2024; 25:260. [PMID: 38454328 PMCID: PMC10921738 DOI: 10.1186/s12864-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Changjiang Qian
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Li
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China.
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China.
| | - Tao Yuan
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Choudhary A, Shekhawat D, Pathania J, Sita K, Sharma S, Chawla A, Jaiswal V. Exploring DNA barcode for accurate identification of threatened Aconitum L. species from Western Himalaya. Mol Biol Rep 2024; 51:75. [PMID: 38175298 DOI: 10.1007/s11033-023-08927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aconitum species, belonging to Ranunculaceae, have high medicinal importance but due to their overexploitation come under IUCN (International Union for Conservation of Nature) red list. The precise identification of the Aconitum species is equally important because they are used in herbal formulations. The present study aimed to develop an efficient DNA barcode system for the authentic identification of Aconitum species. METHODS AND RESULTS A set of 92 barcode gene sequences (including 12 developed during the present study and 80 retrieved from NCBI) of 5 Aconitum species (A. heterophyllum, A. vialoceum, A. japonicum, A. napellus, and A. stapfianum) were analyzed using three methods (tree-based, distance-based, and similarity-based) for species discrimination. The PWG-distance method was found most effective for species discrimination. The discrimination rate of PWG- distance ranged from 33.3% (rbcL + trnH-psbA) to 100% (ITS, rbcL + ITS, ITS + trnH-psbA and rbcL + ITS + trnH-psbA). Among DNA barcodes and their combinations, the ITS marker had the highest degree of species discrimination (NJ-40%, PWG-100% and BLAST-40%), followed by trnH-psbA (NJ-20%, PWG-60% and BLAST-20%). ITS also had higher barcoding gap as compared to other individual barcodes and their combinations. Further, we also analyzed six Aconitum species (A. balfourii, A. ferox, A. heterophyllum, A. rotundifolium, A. soongaricum and A. violaceum) existing in Western Himalaya. These species were distinguished clearly through tree-based method using the ITS barcode gene with 100% species resolution. CONCLUSION ITS showed the best species discrimination power and was used to develop species-specific barcodes for Aconitum species. DNA barcodes developed during the present study can be used to identify Aconitum species.
Collapse
Affiliation(s)
- Anita Choudhary
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Shekhawat
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Jyotsna Pathania
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Kumari Sita
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Shailika Sharma
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Amit Chawla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Vandana Jaiswal
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Chen XH, Ding LN, Zong XY, Xu H, Wang WB, Ding R, Qu B. The complete chloroplast genome sequences of four Liparis species (Orchidaceae) and phylogenetic implications. Gene 2023; 888:147760. [PMID: 37661026 DOI: 10.1016/j.gene.2023.147760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Liparis Richard (Malaxideae, Epidendroideae) is a large and diverse genus of the family Orchidaceae, the taxonomy of which is complicated and controversial. In this study, we sequenced, assembled and analyzed four complete chloroplast genomes of Liparis species including L. kumokiri, L. makinoana, L. pauliana, and L. viridiflora, and evaluated their phylogenetic relationships with related species for the first time. These four chloroplast genomes (size range 153,095 to 158,239 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 83,533-86,752 bp), a small single copy (SSC, 17,938-18,156 bp) and a pair of inverted repeats (IRs, 26,421-26,933 bp). The genomes contain 133 genes, including 87 protein coding genes, 38 tRNAs and 8 rRNA genes. The genome arrangements, gene contents, gene order, long repeats and simple sequence repeats were similar with small differences observed among these four chloroplast genomes. Five highly variable regions including ycf1, ndhA, ndhF, trnQ and trnK were identified from the comparative analysis with other nine related Liparis species, which had the potential to be used as DNA markers for species identification and phylogenetic studies of Liparis species. Phylogenetic analysis based on the complete chloroplast genome sequences strongly supported the polyphyly of Liparis and its further division into three branches. These results provided valuable information to illustrate the complicated taxonomy, phylogeny and evolution process of the Liparis genus.
Collapse
Affiliation(s)
- Xu-Hui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Li-Na Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Xiao-Yan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, PR China
| | - Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| |
Collapse
|
9
|
Yang M, Liu J, Yang W, Li Z, Hai Y, Duan B, Zhang H, Yang X, Xia C. Analysis of codon usage patterns in 48 Aconitum species. BMC Genomics 2023; 24:703. [PMID: 37993787 PMCID: PMC10664653 DOI: 10.1186/s12864-023-09650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/05/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The Aconitum genus is a crucial member of the Ranunculaceae family. There are 350 Aconitum species worldwide, with about 170 species found in China. These species are known for their various pharmacological effects and are commonly used to treat joint pain, cold abdominal pain, and other ailments. Codon usage bias (CUB) analysis contributes to evolutionary relationships and phylogeny. Based on protein-coding sequences (PCGs), we selected 48 species of Aconitum for CUB analysis. RESULTS The results revealed that Aconitum species had less than 50% GC content. Furthermore, the distribution of GC content was irregular and followed a trend of GC1 > GC2 > GC3, indicating a bias towards A/T bases. The relative synonymous codon usage (RSCU) heat map revealed the presence of conservative codons with slight variations within the genus. The effective number of codons (ENC)-Plot and the parity rule 2 (PR2)-bias plot analysis indicate that natural selection is the primary factor influencing the variation in codon usage. As a result, we screened various optimal codons and found that A/T bases were preferred as the last codon. Furthermore, our Maximum Likelihood (ML) analysis based on PCGs among 48 Aconitum species yielded results consistent with those obtained from complete chloroplast (cp.) genome data. This suggests that analyzing mutation in PCGs is an efficient method for demonstrating the phylogeny of species at the genus level. CONCLUSIONS The CUB analysis of 48 species of Aconitum was mainly influenced by natural selection. This study reveals the CUB pattern of Aconitum and lays the foundation for future genetic modification and phylogenetic analyses.
Collapse
Affiliation(s)
- Meihua Yang
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Jiahao Liu
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Wanqing Yang
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Zhen Li
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Yonglin Hai
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China
| | - Haizhu Zhang
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, Dali, Yunnan, 671000, China
| | - Xiaoli Yang
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China.
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, Yunnan, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, Yunnan, 671000, China.
| |
Collapse
|
10
|
Liu X, Zhu J, Jiang M, Guan S, Zhang L, Zhao H. The complete chloroplast genome sequence of Aconitum tschangbaischanense (Ranunculaceae). Mitochondrial DNA B Resour 2023; 8:658-662. [PMID: 37303611 PMCID: PMC10251779 DOI: 10.1080/23802359.2023.2220435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
The perennial herbal medicine species Aconitum tschangbaischanense, is endemic to Changhai Mountain, Jilin province. In this study, we attempted to uncover the complete chloroplast (cp) genome of A. tschangbaischanense based on sequencing data using the Illumina sequencing technology. As per the results: (1) the length of its complete cp genome is 155,881 bp with a typical tetrad structure; (2) the structure of its cp genome contains large single-copy and small single-copy (LSC and SSC) regions of 86,351 and 16,9444 bp, respectively, isolated by two inverted repeat regions (IRs) of 26,293 bp; (3) we annotated a total 131 genes, consisting of 86 protein-coding genes, eight rRNA genes, and 37 tRNA genes. According to the maximum-likelihood phylogenetic tree based on complete cp genomes, A. tschangbaischanense, showed close association with A. carmichaelii, which belongs to clade I. Finally, this study provides the characteristics of the cp genome of A. tschangbaischanense, and its phylogenetic position.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Life Science, Tonghua Normal University, Tonghua, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, Tonghua, China
| | - Junyi Zhu
- College of Life Science, Tonghua Normal University, Tonghua, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, Tonghua, China
| | - Mingge Jiang
- College of Life Science, Tonghua Normal University, Tonghua, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, Tonghua, China
| | - Shengchao Guan
- College of Life Science, Tonghua Normal University, Tonghua, China
| | - Liqiu Zhang
- College of Medical, Tonghua Normal University, Tonghua, China
| | - Haiying Zhao
- College of History and Geography, Tonghua Normal University, Tonghua, China
| |
Collapse
|
11
|
Xiao T, He L, Yue L, Zhang Y, Lee SY. Comparative phylogenetic analysis of complete plastid genomes of Renanthera (Orchidaceae). Front Genet 2022; 13:998575. [PMID: 36186481 PMCID: PMC9515656 DOI: 10.3389/fgene.2022.998575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to its attractive flower shape and color, Renanthera (Orchidaceae), comprising about 19 species, has significant ornamental value as a houseplant, in floral design and in landscape gardens. Two species of Renanthera are categorized as endangered and critically endangered in China’s Red List and international trade in these orchids is currently strictly monitored by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This paper reports on the de novo assembled and annotated plastome of four species of Renanthera; R. citrina, R. coccinea, R. imschootiana, and R. philippinensis. The length of the plastome sequences ranged from 144,673 bp (R. imschootiana) to 149,007 bp (R. coccinea) with GC content of 36.6–36.7%. The plastomes showed a typical quadripartite structure, including a large single-copy (84,241–86,404 bp), a small single-copy (11,468–12,167 bp), and a pair of inverted repeats (24,482–25,715 bp) regions. Of the 120 genes detected, 74 were protein coding, 38 were tRNA, and eight were rRNA genes. The plastome of Renanthera is rather conserved, but nucleotide variations that could distinguish them apart are noticeable—the total number of tandem repeats ranged from 62 (in R. imschootiana) to 74 (in R. citrina); while the number of long repeats ranged from 21 (in R. imschootiana and R. philippinensis) to 43 (in R. citrina). Three hypervariable regions (psbI-trnS-GCU, trnG-GCC, rpl32) were identified. Phylogenetic analyses based on the CDS using maximum likelihood (ML) and Bayesian inference (BI) revealed that Renanthera is closely related to Holcoglossum, Neofinetia, Pendulorchis, and Vanda. The relationship between the four species of Renanthera was fully resolved; a monophyletic clade was formed and R. coccinea was recorded as the first to diverge from the rest. The genetic data obtained from this study could serve as a useful resource for species identification in Renanthera as well as contribute to future research on the phylogenomics of Orchidaceae.
Collapse
Affiliation(s)
- Tao Xiao
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liefen He
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liangliang Yue
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| |
Collapse
|