1
|
Wang H, Liu Q, Cheng S, Li L, Shen W, Ge W. Single-Cell Transcriptomic Analysis of the Potential Mechanisms of Follicular Development in Stra8-Deficient Mice. Int J Mol Sci 2025; 26:3734. [PMID: 40332359 PMCID: PMC12027774 DOI: 10.3390/ijms26083734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Follicle development is a critical process in mammalian reproduction, with significant implications for ovarian reserve and fertility. Stra8 is a known key factor regulating the initiation of meiosis; however, oocyte-like cells still appear in Stra8-deficient mice. Nevertheless, the underlying mechanism remains unclear and requires further investigation. Therefore, we used single-cell RNA sequencing to construct a comprehensive transcriptional atlas of ovarian cells from both wild-type and Stra8-deficient mice at embryonic stages E14.5 and E16.5. With stringent quality control, we obtained a total of 14,755 single cells of six major cell types. A further fine-scale analysis of the germ cell clusters revealed notable heterogeneity between wild-type and Stra8-deficient mice. Compared to the wild-type mice, the deficiency in Stra8 led to the downregulation of meiosis-related genes (e.g., Pigp, Tex12, and Sycp3), and the upregulation of apoptosis-related genes (e.g., Fos, Jun, and Actb), thereby hindering the meiotic process. Notably, we observed that, following Stra8 deficiency, the expression levels of Sub1 and Stk31 remained elevated at this stage. Furthermore, an RNA interference analysis confirmed the potential role of these genes as regulatory factors in the formation of primordial follicle-like cells. Additionally, Stra8 deficiency disrupted the signaling between germ cells and pregranulosa cells that is mediated by Mdk-Sdc1, leading to the abnormal expression of the PI3K/AKT signaling pathway. Together, these results shed light on the molecular processes governing germ cell differentiation and folliculogenesis, emphasizing the complex role of Stra8 in ovarian function.
Collapse
Affiliation(s)
| | | | | | | | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| |
Collapse
|
2
|
Liu L, Liu B, Wang L, Li C, Zhou Y, Zhu J, Ding J, Liu S, Cheng Z. Sohlh1 and Lhx8 are prominent biomarkers to estimate the primordial follicle pool in mice. Reprod Biol Endocrinol 2023; 21:46. [PMID: 37194006 DOI: 10.1186/s12958-023-01097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Efficient evaluation of the primordial follicle pool (PFP) of mammalian models is an essential subject in biomedical research relating to ovarian physiology and pathogenesis. Our recent study has identified a gene signature including Sohlh1, Nobox, Lhx8, Tbpl2, Stk31, Padi6, and Vrtn strongly correlated with ovarian reserve by using bioinformatics analysis. Aimed to investigate the validity of these candidate biomarkers for evaluating the PFP, we utilized an OR comparison model to decode the relationship between the numbers of PFP and candidate biomarkers in the present study. Our results suggest that these biomarkers Sohlh1, Nobox, Lhx8, Tbpl2, Stk31, Padi6, and Vrtn possess independent potential to evaluate the number of the PFP. And the combination of Sohlh1 and Lhx8 can be used as the optimal biomarkers for rapid assessment of the PFP in the murine ovary. Our findings provide a new perspective for evaluating the PFP of the ovary in animal studies and the clinic.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Biting Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jihui Zhu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Gu R, Ge N, Huang B, Fu J, Zhang Y, Wang N, Xu Y, Li L, Peng X, Zou Y, Sun Y, Sun X. Impacts of vitrification on the transcriptome of human ovarian tissue in patients with gynecological cancer. Front Genet 2023; 14:1114650. [PMID: 37007967 PMCID: PMC10063885 DOI: 10.3389/fgene.2023.1114650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: This study investigated the effects of a vitrification/warming procedure on the mRNA transcriptome of human ovarian tissues.Design: Human ovarian tissues were collected and processed through vitrification (T-group) and then subjected to RNA sequencing (RNA-seq) analysis, HE, TdT-mediated dUTP nick-end labeling (TUNEL), and real-time quantitative PCR, and the results were compared to those of the fresh group (CK).Results: A total of 12 patients, aged 15–36 years old, with a mean anti-Müllerian hormone level of 4.57 ± 3.31 ng/mL were enrolled in this study. According to the HE and TUNEL results, vitrification effectively preserved human ovarian tissue. A total of 452 significantly dysregulated genes (|log2FoldChange| > 1 and p < 0.05) were identified between the CK and T groups. Among these, 329 were upregulated and 123 were downregulated. A total of 372 genes were highly enriched for 43 pathways (p < 0.05), which were mainly related to systemic lupus erythematous, cytokine–cytokine receptor interaction, the TNF signaling pathway, and the MAPK signaling pathway. IL10, AQP7, CCL2, FSTL3, and IRF7 were significantly upregulated (p < 0.01), while IL1RN, FCGBP, VEGFA, ACTA2, and ASPN were significantly downregulated in the T-group (p < 0.05) compared to the CK group, which agreed with the results of the RNA-seq analysis.Conclusion: These results showed (for the first time to the authors’ knowledge) that vitrification can induce changes in mRNA expression in human ovarian tissues. Further molecular studies on human ovarian tissues are required to determine whether altered gene expression could result in any downstream consequences.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Naidong Ge
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bin Huang
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Female Fertility Preservation, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ningyi Wang
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Xu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lu Li
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiandong Peng
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yaoyu Zou
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yijuan Sun
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Yijuan Sun, ; Xiaoxi Sun,
| | - Xiaoxi Sun
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Yijuan Sun, ; Xiaoxi Sun,
| |
Collapse
|
4
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|