1
|
Branco GS, Cassel M, Chehade C, de Paiva Camargo M, de Melo Dias GC, Borella MI, de Jesus LWO. Ontogeny of adenohypophyseal cells, pituitary gland development, and structure in adults of Astyanax lacustris (Teleostei, Characiformes): an emerging Neotropical model fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:33. [PMID: 39821744 DOI: 10.1007/s10695-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Pituitary gland morphogenesis and the ontogeny of the adenohypophyseal (AH) cells of Astyanax lacustris are presented herein. This Characiformes species shows great ecological and commercial importance, and it has been increasingly used as animal model. For this study, A. lacustris specimens were collected from 0.5 to 120 days after hatching (dah) (adults). The entire animal or its head was appropriately fixed, and after histological processing, the sections were subjected to histochemical and immunohistochemical reactions, using homologous and heterologous antibodies. The first AH cells of A. lacustris were detected at 1 dah by the immunostaining of prolactin (PRL)-producing cells. The morphology of the gland presented changes in shape throughout the development, starting with elongation but more oval at the end. The neurohypophysis was differentiated at 3 dah, along with the identification of adrenocorticotropic hormone (ACTH), melanotropic hormone (MSH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH)-producing cells. Identification of the immunoreactive cells to anti-luteinizing hormone (LH), anti-somatolactin (SL), and anti-growth hormone (GH) antibodies occurred at 5 dah. At 20 dah, an increase in pituitary proportions and the presence of the pituitary stalk were observed. At 60 dah, the pituitary gland already had the same shape and distribution of AH cells seen in the adult. The ontogeny of adenohypophyseal cells in A. lacustris corroborates the heterogeneity in the appearance of these cell types in teleosts and suggests that these hormones actively participate during the post-hatching development of this species, even before the establishment of all endocrine axes. Our findings contribute to understanding the morphogenesis of the hypothalamic-pituitary axis in South American teleosts, providing essential data for the development of future studies related to pituitary gland morphophysiology under normal or experimental conditions.
Collapse
Affiliation(s)
- Giovana Souza Branco
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
- Laboratory of Metabolism and Reproduction of Aquatic Organisms (LAMEROA), Department of Physiology, Biosciences Institute, University of São Paulo, Rua Do Matão, Lane 14, N. 101, Lab 220, São Paulo, São Paulo, CEP, 05508-000, Brazil.
| | - Monica Cassel
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Federal University of Triângulo Mineiro, Iturama University Campus, Iturama, Minas Gerais, Brazil
| | - Chayrra Chehade
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marília de Paiva Camargo
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Cristiane de Melo Dias
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Ines Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Rosero J, Monzani PS, Pessoa GP, Coelho GCZ, Carvalho GB, López LS, Senhorini JA, Dos Santos SCA, Yasui GS. Traceability of primordial germ cells in three neotropical fish species aiming genetic conservation actions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2025-2042. [PMID: 38060079 DOI: 10.1007/s10695-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Primordial germ cells (PGCs) are embryonic pluripotent cells that can differentiate into spermatogonia and oogonia, and therefore, PGCs are a genetic source for germplasm conservation through cryobanking and the generation of germline chimeras. The knowledge of PGC migration routes is essential for transplantation studies. In this work, the mRNA synthesized from the ddx4 3'UTR sequence of Pseudopimelodus mangurus, in fusion with gfp or dsred, was microinjected into zygotes of three neotropical species (P. mangurus, Astyanax altiparanae, and Prochilodus lineatus) for PGC labeling. Visualization of labeled PGCs was achieved by fluorescence microscopy during embryonic development. In addition, ddx4 and dnd1 expressions were evaluated during embryonic development, larvae, and adult tissues of P. mangurus, to validate their use as a PGC marker. As a result, the effective identification of presumptive PGCs was obtained. DsRed-positive PGC of P. mangurus was observed in the hatching stage, GFP-positive PGC of A. altiparanae in the gastrula stage, and GFP-positive PGCs from P. lineatus were identified at the segmentation stage, with representative labeling percentages of 29% and 16% in A. altiparanae and P. lineatus, respectively. The expression of ddx4 and dnd1 of P. mangurus confirmed the specificity of these genes in germ cells. These results point to the functionality of the P. mangurus ddx4 3'UTR sequence as a PGC marker, demonstrating that PGC labeling was more efficient in A. altiparanae and P. lineatus. The procedures used to identify PGCs in P. mangurus consolidate the first step for generating germinal chimeras as a conservation action of P. mangurus.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
3
|
Rosero J, Pessoa GP, Carvalho GB, López LS, Dos Santos SCA, Bressan FF, Yasui GS. Primordial germ cells of Astyanax altiparanae, isolated and recovered intact after vitrification: A preliminary study for potential cryopreservation of Neotropical fish germplasm. Cryobiology 2024; 116:104929. [PMID: 38871206 DOI: 10.1016/j.cryobiol.2024.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Primordial germ cells (PGCs) constitute an important cell lineage that directly impacts genetic dissemination and species conservation through the creation of cryobanks. In order to advance the field of animal genetic cryopreservation, this work aimed to recover intact PGCs cryopreserved in embryonic tissues during the segmentation phase for subsequent in vitro maintenance, using the yellow-tailed tetra (Astyanax altiparanae) as a model organism. For this, a total of 202 embryos were distributed in two experiments. In the first experiment, embryos in the segmentation phase were dissociated, and isolated PGCs were maintained in vitro. They were visualized using gfp-Pm-ddx4 3'UTR labeling. The second experiment aimed to vitrify PGCs using 3 cryoprotective agents or CPAs (dimethyl sulfoxide, ethylene glycol, and 1,2 propanediol) at 3 molarities (2, 3, and 4 M). The toxicity, somatic cell viability, and recovery of intact PGCs were evaluated. After cryopreservation and thawing, 2 M ethylene glycol produced intact PGCs and somatic cells (44 ± 11.52 % and 42.35 ± 0.33 %, respectively) post-thaw. The recovery of PGCs from frozen embryonic tissues was not possible without the use of CPAs. Thus, the vitrification of PGCs from an important developmental model and Neotropical species such as A. altiparanae was achieved, and the process of isolating and maintaining PGCs in a culture medium was successful. Therefore, to ensure the maintenance of genetic diversity, PGCs obtained during embryonic development in the segmentation phase between 25 and 28 somites were stored through vitrification for future applications in the reconstitution of species through germinal chimerism.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
4
|
Rosero J, Pereira Dos Santos Silva A, Alves Dos Santos SC, Shigueki Yasui G. Dried storage of sperm at supra-zero temperatures: An alternative for flow cytometric analysis under field conditions. Cryobiology 2024; 115:104899. [PMID: 38663664 DOI: 10.1016/j.cryobiol.2024.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In biotechnological processes such as chromosomal manipulation studies, semen has become a reference in the ploidy verification of the evaluated material. However, the use of fresh samples is limited to the use at field conditions because the analysis is performed under laboratory conditions. Thus, this study aimed to develop a simpler procedure for storing dry semen at 28 °C to reduce cold storage costs. For this, semen samples were evaluated according to established quality semen parameters, a protocol for dry, and 3 sterilization treatments of dry semen were applied to the store. The integrity of the DNA was evaluated every two months, using fresh semen, dry semen (untreated), and particles 3C to compare the peaks by flow cytometry. The results indicated that all samples evaluated before and after drying showed no significant difference in the DNA content. UV-treated semen showed a 1C peak in the histogram up to 180 days of storage and a non-significant difference (P > 0.05) from fresh control in the number of DNA particles up to 120 days and untreated only showed a 1C peak up to 120 days. The developed method may become an interesting procedure to serve as a reference peak for practical flow cytometric analysis, not only in the field of fish biology but also in biomedical and agricultural sciences. Furthermore, dried semen can become a tool for the preservation of genetic material and is a promising low-cost storage technique for biobanking.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| | - Amanda Pereira Dos Santos Silva
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | | | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|