1
|
Ruan C, Xie Y, Ye H, Zhang Y, Zhang R, Li Y. Role of fragile sites FATS and FMR1 in tumor progression and their potential clinical significance. Int J Cancer 2025. [PMID: 40202510 DOI: 10.1002/ijc.35417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
The fragile sites are defined as specific segments of genes that are particularly susceptible to breakage under conditions of accelerated replication stress or certain external influences. It has been demonstrated that fragile sites can influence the progression of various tumors. However, the majority of existing studies have focused on the functions of well-characterized common fragile sites, such as FHIT, WWOX, and PARK2, in different oncogenic processes, with insufficient attention directed towards other fragile sites. This article presents an analysis of recent investigations into the fragile sites, fragile site-associated tumor suppressor (FATS) and fragile X mental retardation 1 (FMR1), across various tumor types. The article discusses the mechanisms and signaling pathways regulated by these sites in a range of cancers, as well as their clinical implications for tumor treatment. The review highlights the significance of the fragile sites FATS and FMR1 in various cancers and their clinical relevance.
Collapse
Affiliation(s)
- Chuangdong Ruan
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yichun Xie
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huabin Ye
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqin Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical Medical School of Guangdong Pharmaceutical University(Guangdong Second Provincial General Hospital), Guangzhou, China
| | - Yan Li
- Department of Neurology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
3
|
Masnovo C, Paleiov Z, Dovrat D, Baxter LK, Movafaghi S, Aharoni A, Mirkin SM. Stabilization of expandable DNA repeats by the replication factor Mcm10 promotes cell viability. Nat Commun 2024; 15:10532. [PMID: 39627228 PMCID: PMC11615337 DOI: 10.1038/s41467-024-54977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Trinucleotide repeats, including Friedreich's ataxia (GAA)n repeats, become pathogenic upon expansions during DNA replication and repair. Here, we show that deficiency of the essential replisome component Mcm10 dramatically elevates (GAA)n repeat instability in a budding yeast model by loss of proper CMG helicase interaction. Supporting this conclusion, live-cell microscopy experiments reveal increased replication fork stalling at the repeat in mcm10-1 cells. Unexpectedly, the viability of strains containing a single (GAA)100 repeat at an essential chromosomal location strongly depends on Mcm10 function and cellular RPA levels. This coincides with Rad9 checkpoint activation, which promotes cell viability, but initiates repeat expansions via DNA synthesis by polymerase δ. When repair is inefficient, such as in the case of RPA depletion, breakage of under-replicated repetitive DNA can occur during G2/M, leading to loss of essential genes and cell death. We hypothesize that the CMG-Mcm10 interaction promotes replication through hard-to-replicate regions, assuring genome stability and cell survival.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Zohar Paleiov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Laurel K Baxter
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Sofia Movafaghi
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
4
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
5
|
Gerovska D, Fernández Moreno P, Zabala A, Araúzo-Bravo MJ. Cell-Free Genic Extrachromosomal Circular DNA Profiles of DNase Knockouts Associated with Systemic Lupus Erythematosus and Relation with Common Fragile Sites. Biomedicines 2023; 12:80. [PMID: 38255187 PMCID: PMC10813657 DOI: 10.3390/biomedicines12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Cell-free extrachromosomal circular DNA (cf-eccDNA) has been proposed as a promising early biomarker for disease diagnosis, progression and drug response. Its established biomarker features are changes in the number and length distribution of cf-eccDNA. Another novel promising biomarker is a set of eccDNA excised from a panel of genes specific to a condition compared to a control. Deficiencies in two endonucleases that specifically target DNA, Dnase1 and Dnase1l3, are associated with systemic lupus erythematosus (SLE). To study the genic eccDNA profiles in the case of their deficiencies, we mapped sequenced eccDNA data from plasma, liver and buffy coat from Dnase1 and Dnase1l3 knockouts (KOs), and wild type controls in mouse. Next, we performed an eccDNA differential analysis between KO and control groups using our DifCir algorithm. We found a specific genic cf-eccDNA fingerprint of the Dnase1l3 group compared to the wild type controls involving 131 genes; 26% of them were associated with human chromosomal fragile sites (CFSs) and with a statistically significant enrichment of CFS-associated genes. We found six genes in common with the genic cf-eccDNA profile of SLE patients with DNASE1L3 deficiency, namely Rorb, Mvb12b, Osbpl10, Fto, Tnik and Arhgap10; all of them were specific and present in all human plasma samples, and none of them were associated with CFSs. A not so distinctive genic cf-eccDNA difference involving only seven genes was observed in the case of the Dnase1 group compared to the wild type. In tissue-liver and buffy coat-we did not detect the same genic eccDNA difference observed in the plasma samples. These results point to a specific role of a set of genic eccDNA in plasma from DNase KOs, as well as a relation with CFS genes, confirming the promise of the genic cf-eccDNA in studying diseases and the need for further research on the relationship between eccDNA and CFSs.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Patricia Fernández Moreno
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Aitor Zabala
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
6
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 microsatellite sequences by human DNA polymerase δ holoenzymes is dependent on dNTP and RPA levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566133. [PMID: 37986888 PMCID: PMC10659299 DOI: 10.1101/2023.11.07.566133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Difficult-to-Replicate Sequences (DiToRS) are natural impediments in the human genome that inhibit DNA replication under endogenous replication. Some of the most widely-studied DiToRS are A+T-rich, high "flexibility regions," including long stretches of perfect [AT/TA] microsatellite repeats that have the potential to collapse into hairpin structures when in single-stranded DNA (ssDNA) form and are sites of recurrent structural variation and double-stranded DNA (dsDNA) breaks. Currently, it is unclear how these flexibility regions impact DNA replication, greatly limiting our fundamental understanding of human genome stability. To investigate replication through flexibility regions, we utilized FRET to characterize the effects of the major ssDNA-binding complex, RPA, on the structure of perfect [AT/TA]25 microsatellite repeats and also re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with A+T-rich DNA template sequences. The results indicate that [AT/TA]25 sequences adopt hairpin structures that are unwound by RPA and pol δ holoenzymes support dNTP incorporation through the [AT/TA]25 sequences as well as an A+T-rich, non-structure forming sequence. Furthermore, the extent of dNTP incorporation is dependent on the sequence of the DNA template and the concentration of dNTPs. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on the concentration of dNTPs, whereas the effects of RPA on the replication of an A+T-rich, non-structure forming sequence are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how flexibility regions contribute to genome instability.
Collapse
Affiliation(s)
- Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristin A. Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
8
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
9
|
Gilbert DM. Replication licensing during S phase: breaking the law to prevent breaking DNA. Nat Struct Mol Biol 2023; 30:406-408. [PMID: 37041325 DOI: 10.1038/s41594-023-00962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Affiliation(s)
- David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA.
| |
Collapse
|
10
|
Kałuzińska-Kołat Ż, Kośla K, Kołat D, Płuciennik E, Bednarek AK. Antineoplastic Nature of WWOX in Glioblastoma Is Mainly a Consequence of Reduced Cell Viability and Invasion. BIOLOGY 2023; 12:465. [PMID: 36979157 PMCID: PMC10045224 DOI: 10.3390/biology12030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Following the discovery of WWOX, research has moved in many directions, including the role of this putative tumor suppressor in the central nervous system and related diseases. The task of determining the nature of WWOX in glioblastoma (GBM) is still considered to be at the initial stage; however, the influence of this gene on the GBM malignant phenotype has already been reported. Because most of the available in vitro research does not consider several cellular GBM models or a wide range of investigated biological assays, the present study aimed to determine the main processes by which WWOX exhibits anticancer properties in GBM, while taking into account the phenotypic heterogeneity between cell lines. Ectopic WWOX overexpression was studied in T98G, DBTRG-05MG, U251MG, and U87MG cell lines that were compared with the use of assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, three-dimensional and anchorage-independent growth, and invasiveness. Observations presenting the antineoplastic properties of WWOX were consistent for T98G, U251MG, and U87MG. Increased proliferation and tumor growth were noted in WWOX-overexpressing DBTRG-05MG cells. A possible explanation for this, arrived at via bioinformatics tools, was linked to the TARDBP transcription factor and expression differences of USP25 and CPNE2 that regulate EGFR surface abundance. Collectively, and despite various cell line-specific circumstances, WWOX exhibits its anticancer nature mainly via a reduction of cell viability and invasiveness of glioblastoma.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| |
Collapse
|