1
|
Yang C, Zhang G, Shu C, Lv L, Liu Z, Tian Y, Tan Q, Wang Z, Hu S, Yang L, Sun N. Exploring CYP2D6 polymorphisms and angiotensin receptor blocker response in the Bai hypertensive population. Pharmacogenet Genomics 2024; 34:199-208. [PMID: 38848263 PMCID: PMC11221794 DOI: 10.1097/fpc.0000000000000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE The CYP2D6 enzyme is crucial for the metabolism and disposition of a variety of drugs. This study was conducted to examine the relationship between CYP2D6 gene polymorphisms and the response to angiotensin receptor blocker (ARB)-based treatment in patients of Chinese Bai ethnicity with hypertension. METHODS Seventy-two hypertensive adults from the Chinese Bai ethnic group, exhibiting systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, were recruited. Targeted regional sequencing was utilized to genotype single nucleotide polymorphisms in the CYP2D6 gene, aiming to assess their frequency and to evaluate their influence on the therapeutic efficacy of ARB medications. RESULTS Our research identified nine significant CYP2D6 polymorphisms associated with the efficacy of ARB treatment in the Bai hypertensive cohort. Specifically, patients possessing certain mutant genotype at rs111564371 exhibited substantially greater reductions in SBP and DBP, with P -values of 0.021 and 0.016, respectively, compared to those carrying the wild genotype. Additionally, these mutant genotype at rs111564371 and rs112568578 were linked to approximately 20% higher overall efficacy rates and a 10% increased achievement rate relative to the wild genotype. CONCLUSION Our research with the Bai hypertensive group shows that certain CYP2D6 polymorphisms significantly influence ARB treatment outcomes. Mutations at rs111564371 led to better blood pressure control ( P -values: 0.021 for SBP, 0.016 for DBP), improving ARB efficacy by appromixately 20% and increasing treatment goal achievement by 10% over the wild-type genotype. STATEMENTS Our investigation into CYP2D6 polymorphisms within the Bai hypertensive cohort marks a substantial advancement towards personalized healthcare, underscoring the pivotal influence of genetic constitution on the effectiveness of ARB therapy.
Collapse
Affiliation(s)
| | | | - Chang Shu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences
| | - Linxi Lv
- Dali First People’s Hospital, Yunnan
| | | | - Yan Tian
- Beijing E-Seq Medical Technology Co. Ltd
| | - Qi Tan
- Beijing HuaGengYuan Pharmacogenomics Research Institute Co., Ltd
| | - Zhaobin Wang
- Beijing HuaGengYuan Pharmacogenomics Research Institute Co., Ltd
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Libo Yang
- Dali First People’s Hospital, Yunnan
| | - Ningling Sun
- Department of Hypertension, People’s Hospital, Peking University, Beijing, China
| |
Collapse
|
2
|
Gebreyesus TD, Makonnen E, Telele NF, Barry A, Mnkugwe RH, Gerba H, Dahl ML, Aklillu E. CYP2C19 and CYP2J2 genotypes predict praziquantel plasma exposure among Ethiopian school-aged children. Sci Rep 2024; 14:11730. [PMID: 38778126 PMCID: PMC11111788 DOI: 10.1038/s41598-024-62669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolism of praziquantel (PZQ), a racemic mixture and the only drug approved to treat S. mansoni infection, is mediated by genetically polymorphic enzymes. Periodic school-based mass drug administration (MDA) with PZQ is the core intervention to control schistosomiasis. However data on the impact of pharmacogenetic variation, nutrition, and infection status on plasma PZQ exposure is scarce. We investigated genetic and non-genetic factors influencing PZQ plasma concentration and its metabolic ratios (trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ). Four hundred forty-six school children aged 7-15 years from four primary schools in southern Ethiopia who received albendazole and PZQ preventive chemotherapy through MDA campaign were enrolled. Genotyping for common functional variants of CYP3A4 (*1B), CYP3A5 (*3, *6), CYP2C19 (*2, *3, *17), CYP2C9 (*2, *3), and CYP2J2*7 was performed. Plasma concentrations of PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ were quantified using UPLCMS/MS. Carriers of CYP2C19 defective variant alleles (*2 and *3) had significantly higher mean PZQ plasma concentration than CYP2C19*1/*1 or *17 carriers (p = 0.005). CYP2C19*1/*1 and CYP2C19*17 carriers had higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios compared with CYP2C19*2 or *3 carriers (p < 0.001). CYP2J2*7 carriers had lower mean PZQ plasma concentration (p = 0.05) and higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios. Male participants had significantly higher PZQ concentration (p = 0.006) and lower metabolic ratios (p = 0.001) than females. There was no significant effect of stunting, wasting, S. mansoni or soil-transmitted helminth infections, CYP3A4, CYP3A5, or CYP2C9 genotypes on plasma PZQ or its metabolic ratios. In conclusion, sex, CYP2C19 and CYP2J2 genotypes significantly predict PZQ plasma exposure among Ethiopian children. The impact of CYP2C19 and CYP2J2 genotypes on praziquantel treatment outcomes requires further investigation.
Collapse
Affiliation(s)
- Tigist Dires Gebreyesus
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigus Fikrie Telele
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Abbie Barry
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Heran Gerba
- Ethiopian Food and Drug Authority, Addis Ababa, Ethiopia
| | - Marja-Liisa Dahl
- Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Koopman JPR, Houlder EL, Janse JJ, Casacuberta-Partal M, Lamers OAC, Sijtsma JC, de Dood C, Hilt ST, Ozir-Fazalalikhan A, Kuiper VP, Roozen GVT, de Bes-Roeleveld LM, Kruize YCM, Wammes LJ, Smits HH, van Lieshout L, van Dam GJ, van Amerongen-Westra IM, Meij P, Corstjens PLAM, Jochems SP, van Diepen A, Yazdanbakhsh M, Hokke CH, Roestenberg M. Safety and infectivity of female cercariae in Schistosoma-naïve, healthy participants: a controlled human Schistosoma mansoni infection study. EBioMedicine 2023; 97:104832. [PMID: 37837930 PMCID: PMC10585222 DOI: 10.1016/j.ebiom.2023.104832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING European Union's Horizon 2020 (grant no. 81564).
Collapse
Affiliation(s)
- Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Miriam Casacuberta-Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Olivia A C Lamers
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Claudia de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Stan T Hilt
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Arifa Ozir-Fazalalikhan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Vincent P Kuiper
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Geert V T Roozen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Linda J Wammes
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Hermelijn H Smits
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Govert J van Dam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Inge M van Amerongen-Westra
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Simon P Jochems
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Angela van Diepen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Cornelis H Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
4
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Barry A, Kabatende J, Telele NF, Mnkugwe RH, Mugisha M, Ntirenganya L, Bienvenu E, Aklillu E. Effect of pharmacogenetic variations on praziquantel plasma concentration and safety outcomes among school children in Rwanda. Sci Rep 2023; 13:1446. [PMID: 36702944 PMCID: PMC9879930 DOI: 10.1038/s41598-023-28641-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
School-based mass drug administration (MDA) of Praziquantel (PZQ) is the global intervention strategy for elimination of schistosomiasis. Genetic variations in drug metabolizing enzymes and transporter proteins influences drug exposure and treatment outcomes, but data on PZQ pharmacokinetics and safety outcomes are scarce. We investigated the effect of pharmacogenetics variations on PZQ plasma concentrations and safety outcomes among 462 Rwandan schoolchildren who received single dose PZQ and albendazole in MDA. Genotyping for common functional variant alleles CYP3A4*1B, CYP3A5 (*3, *6, *7), CYP2C19 (*2, *3, *17), CYP2C9 (*2, *3) and CYP2J2*7 were done. Plasma concentration of PZQ, cis-4-OH-PZQ and trans-4-OH-PZQ were measured using LC/MS/MS. Active safety monitoring was done on days 1, 2, and 7 post-MDA. CYP2C9 and CYP2C19 genotypes were significantly associated with PZQ plasma concentrations and its cis- and trans-4-OH-PZQ/PZQ metabolic ratios (MR). CYP2C9*2 and CYP2C9*3 carriers had significantly higher PZQ concentration (p = 0.02), lower trans-4-OH-PZQ/PZQ (p < 0.001), and cis-4-OH-PZQ/PZQ (p = 0.02) MR. CYP2C19 (*2, *3) carriers had significantly higher plasma PZQ concentration than CYP2C19 *1/*1 and CYP2C19 *17 carriers (*1/*17 or *17/*17) (p < 0.001). CYP3A4 was significantly associated with cis-4-OH-PZQ MR (p = 0.04). Lower cis-4-OH-PZQ/PZQ MR (p < 0.0001) was a predictor of MDA-associated adverse events, but no significant association with genotypes were found. In conclusion, CYP2C9 and CYP2C19 genotypes significantly influence the plasma PZQ concentration and its MR. Lower cis-4-OH-PZQ/PZQ MR is significant predictor of adverse events following MDA.
Collapse
Affiliation(s)
- Abbie Barry
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Joseph Kabatende
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Nigus Fikrie Telele
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Michael Mugisha
- College of Medicine and Health Sciences, University of Rwanda, KK 737, Kigali, Rwanda
| | - Lazare Ntirenganya
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emile Bienvenu
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda.,College of Medicine and Health Sciences, University of Rwanda, KK 737, Kigali, Rwanda
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|