1
|
Lee K, Choi LY, Ahn JS, Song JY, Park JK, Yun SJ, Lee JH, Shin EC, Yeom SJ, Zhao J, Cho TJ, Oh NS, Shin JO, Kim D, Kim TG, Cho HT, Shin HR, Kim YJ, Kim JK. Transcriptomic signatures in response to antioxidants supplementation in Korean cattle beef, Hanwoo: a 7-month feeding study. Front Vet Sci 2025; 12:1546248. [PMID: 40343365 PMCID: PMC12061023 DOI: 10.3389/fvets.2025.1546248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction The present study investigated the effects of antioxidant supplementation on the transcriptomic profiles of Hanwoo cattle during a 7-month feeding trial. Methods Twelve castrated Hanwoo cattle were randomly assigned to two groups: a control group (CON) and a group supplemented with antioxidants (FEED), consisting of vitamin C, vitamin E, and selenium. Growth performance and carcass traits were evaluated, and liver transcriptomic changes were assessed using RNA sequencing. Results and discussion While no significant differences were observed in phenotypic traits such as weight gain and feed conversion ratio, transcriptomic analysis identified 641 differentially expressed genes between the CON and FEED groups. Functional enrichment analysis revealed that differentially expressed genes were mainly associated with transcription regulation, pseudouridine synthesis, and mitochondrial function. These findings suggest that antioxidant supplementation elicits significant molecular changes in the liver, particularly affecting transcriptional activity and mitochondrial processes, even in the absence of detectable phenotypic differences.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - La Yoon Choi
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | | | | | | | | | | | - Eui-Cheol Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jiangchao Zhao
- Department of Animal Science, Dale Bumpers College of Agricultural, Food and Life Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Tae Jin Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix, Gwangmyeong, Republic of Korea
| | | | - Hyo Ri Shin
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, NJ, United States
| |
Collapse
|
2
|
Adugna A, Azanaw Amare G, Jemal M. Current Advancements in Serum Protein Biomarkers for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma. Immun Inflamm Dis 2025; 13:e70171. [PMID: 40192058 PMCID: PMC11973733 DOI: 10.1002/iid3.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Hepatitis B virus (HBV)-related liver cancer is the third most common cause of cancer-related death globally. Hepatocyte remodeling, also known as hepatocyte transformation and immortalization, and hepatocellular carcinoma (HCC), are brought on by persistent inflammation caused by HBV in the host hepatocytes. One of the main concerns in the perspective of HBV-induced hepatocyte remodeling and liver cancer is accurately identifying cancer stages to maximize early screening and detection. Biological signatures have a significant impact on solving this problem. OBJECTIVE This review article aimed to discuss the novel serum protein biomarkers for HBV-induced hepatocyte remodeling and HCC. METHODS The information was collected from various peer-reviewed journals through electronic searches utilizing various search engines, including PubMed, Google Scholar, HINARI, and Cochrane Library from 2017 to 2024. Keywords for searches included "serum protein biomarkers in HBV-HCC," "blood-based biomarkers in HBV-HCC," and "viral biomarkers for HBV-HCC." RESULTS Recently, novel protein signatures have been discovered for the early diagnosis, treatment, and prognosis of HBV-induced hepatic cell remodeling and HCC from proteomic data sets. We have discussed the recent literature on the clinical utility of the protein signatures for the diagnosis and forecasting of HBV-associated hepatocyte remodeling and HCC, including golgi protein 73 (GP73), glypican-3 (GPC3), midkine (MDK), des-γ-carboxy-prothrombin (DCP), von Willebrand factor (vWF), pentraxin 3 (PTX3), pseudouridine synthases 7 (PUSs 7), squamous cell carcinoma antigen (SCCA), and osteopontin (OPN). CONCLUSION All these protein markers also exhibit the survival of HBV-related HCC patients, the proliferation, migration, antiapoptosis, mitogenesis, transformation, and angiogenesis of HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory SciencesCollege of Health SciencesDebre Markos UniversityDebre MarkosEthiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory SciencesCollege of Health SciencesDebre Markos UniversityDebre MarkosEthiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of MedicineDebre Markos UniversityDebre MarkosEthiopia
| |
Collapse
|
3
|
Huang C, Lin J, Chen L, Sun W, Xia J, Wu M. Upregulation of C1QC as a Mediator of Blood-Brain Barrier Damage in Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:5234-5251. [PMID: 39531193 DOI: 10.1007/s12035-024-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated. The primary aim of this investigation was to uncover the pivotal dysregulation of specific genes observed within the cerebral microvascular endothelial cells of diabetic patients, with a particular focus on understanding its biological implications in the disruption of the BBB. By integrating bioinformatics analysis, we identified C1QC as a potential upregulated marker. The expression level of C1QC was subsequently verified in both in vivo and in vitro models. Our experiments have discovered that, under diabetic conditions, suppressing C1QC leads to the mitigation of BBB damage. The presence of a high level of C1QC, through its binding to discoidin domain receptor 2 (DDR2), may trigger the activation of its downstream MMP9, a calcium-dependent enzyme that is capable of degrading protein components in the extracellular matrix, consequently leading to the structural and functional disruption of BBB. In summary, the findings of this study indicate that the aberrantly upregulated expression of C1QC may exert deleterious effects on the BBB under diabetes. To alleviate neurological impairments in individuals with T2DM, C1QC may emerge as a promising therapeutic target worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxing Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- Taylor's University, Subang Jaya, Malaysia
| | - Wenzhe Sun
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
4
|
Jia S, Yu X, Deng N, Zheng C, Ju M, Wang F, Zhang Y, Gao Z, Li Y, Zhou H, Li K. Deciphering the pseudouridine nucleobase modification in human diseases: From molecular mechanisms to clinical perspectives. Clin Transl Med 2025; 15:e70190. [PMID: 39834094 PMCID: PMC11746961 DOI: 10.1002/ctm2.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis. Cellular stresses trigger RNA pseudouridylation in organisms, suggesting that pseudouridylation-mediated epigenetic reprogramming is essential for maintaining cellular viability and responding to stress. This review examines the regulatory mechanisms and pathological implications of pseudouridylation in human diseases, with a focus on its involvement in tumourigenesis. Additionally, it explores the therapeutic potential of targeting pseudouridylation, presenting novel strategies for disease treatment. HIGHLIGHTS: Methods to detect pseudouridine were introduced from classic mass spectrometry-based methods to newer approaches such as nanopore-based technologies and BID sequencing, each with its advantages and limitations. RNA pseudouridylation is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Increased pseudouridylation is frequently associated with tumour initiation, progression, and poor prognosis, whereas its reduction is predominantly implicated in non-tumour diseases. A comprehensive understanding of the inducing factors for RNA pseudouridylation will be essential for elucidating its role in diseases. Such insights can provide robust evidence for how pseudouridylation influences disease progression and offer new avenues for therapeutic strategies targeting pseudouridylation dysregulation. The therapeutic potential of RNA pseudouridylation in diseases is enormous, including inhibitors targeting pseudouridine synthases, the application of RNA pseudouridylation in RNA therapeutics, and its role as a biological marker.
Collapse
Affiliation(s)
- Shiheng Jia
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Deng
- Department of HematologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chen Zheng
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mingguang Ju
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Fanglin Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yixiao Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ziming Gao
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yanshu Li
- Department of Cell BiologyKey Laboratory of Cell BiologyNational Health Commission of the PRC and Key Laboratory of Medical Cell BiologyMinistry of Education of the PRCChina Medical UniversityShenyangLiaoningChina
| | - Heng Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Kai Li
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
5
|
Nakagawa H, Lin A. The translation of oncogenic mRNAs regulated by pseudouridylation: A new player in HCC. Hepatology 2024; 80:1003-1005. [PMID: 38252799 DOI: 10.1097/hep.0000000000000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University, Mie, Japan
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Hu YX, Diao LT, Hou YR, Lv G, Tao S, Xu WY, Xie SJ, Ren YH, Xiao ZD. Pseudouridine synthase 1 promotes hepatocellular carcinoma through mRNA pseudouridylation to enhance the translation of oncogenic mRNAs. Hepatology 2024; 80:1058-1073. [PMID: 38015993 DOI: 10.1097/hep.0000000000000702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.
Collapse
Affiliation(s)
- Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Guo Lv
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Wan-Yi Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shu-Juan Xie
- Institute of Vaccine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Han Ren
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
7
|
Daniels NJ, Hershberger CE, Kerosky M, Wehrle CJ, Raj R, Aykun N, Allende DS, Aucejo FN, Rotroff DM. Biomarker Discovery in Liver Disease Using Untargeted Metabolomics in Plasma and Saliva. Int J Mol Sci 2024; 25:10144. [PMID: 39337628 PMCID: PMC11432510 DOI: 10.3390/ijms251810144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), continue to be a global health burden with a rise in incidence and mortality, necessitating a need for the discovery of novel biomarkers for HCC detection. This study aimed to identify novel non-invasive biomarkers for these different liver disease states. We performed untargeted metabolomics in plasma (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 34) and saliva samples (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 22) to test for significant metabolite associations with each disease state. Additionally, we identified enriched biochemical pathways and analyzed correlations of metabolites between, and within, the two biofluids. We identified two salivary metabolites and 28 plasma metabolites significantly associated with at least one liver disease state. No metabolites were significantly correlated between biofluids, but we did identify numerous metabolites correlated within saliva and plasma, respectively. Pathway analysis revealed significant pathways enriched within plasma metabolites for several disease states. Our work provides a detailed analysis of the altered metabolome at various stages of liver disease while providing some context to altered pathways and relationships between metabolites.
Collapse
Affiliation(s)
- Noah J Daniels
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Courtney E Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Matthew Kerosky
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chase J Wehrle
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Roma Raj
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nihal Aykun
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Federico N Aucejo
- Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Qu S, Nelson HM, Liu X, Wang Y, Semler EM, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil treatment represses pseudouridine-containing miRNA export into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70010. [PMID: 39281020 PMCID: PMC11393769 DOI: 10.1002/jex2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
5-Fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. We examined the impact of 5-FU on post-transcriptional small RNA modifications (PTxMs) and the expression and export of RNA into small extracellular vesicles (sEVs). EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. We found that treatment of colorectal cancer (CRC) cells with 5-FU represses sEV export of miRNA and snRNA-derived RNAs, but promotes export of snoRNA-derived RNAs. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and sEV small RNA profiles. In contrast, 5-FU exposure led to increased levels of cellular small RNAs containing a variety of methyl-modified bases. These unexpected findings show that 5-FU exposure leads to altered RNA expression, base modification, and aberrant trafficking and localization of small RNAs.
Collapse
Affiliation(s)
- Shimian Qu
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Hannah M. Nelson
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Xiao Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Yu Wang
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Elizabeth M. Semler
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Danielle L. Michell
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Clark Massick
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - John Karijolich
- Department of Pathology, Microbiology and ImmunologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Robert J. Coffey
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Qi Liu
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Biostatistics and BioinformaticsVUMCNashvilleTennesseeUSA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James G. Patton
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University and Vanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
9
|
Zhang J, Xu L, Yan X, Hu J, Gao X, Zhao H, Geng M, Wang N, Hu S. Multiomics and machine learning-based analysis of pancancer pseudouridine modifications. Discov Oncol 2024; 15:361. [PMID: 39162904 PMCID: PMC11335713 DOI: 10.1007/s12672-024-01093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudouridine widely affects the stability and function of RNA. However, our knowledge of pseudouridine properties in tumors is incomplete. We systematically analyzed pseudouridine synthases (PUSs) expression, genomic aberrations, and prognostic features in 10907 samples from 33 tumors. We found that the pseudouridine-associated pathway was abnormal in tumors and affected patient prognosis. Dysregulation of the PUSs expression pattern may arise from copy number variation (CNV) mutations and aberrant DNA methylation. Functional enrichment analyses determined that the PUSs expression was closely associated with the MYC, E2F, and MTORC1 signaling pathways. In addition, PUSs are involved in the remodeling of the tumor microenvironment (TME) in solid tumors, such as kidney and lung cancers. Particularly in lung cancer, increased expression of PUSs is accompanied by increased immune checkpoint expression and Treg infiltration. The best signature model based on more than 112 machine learning combinations had good prognostic ability in ACC, DLBC, GBM, KICH, MESO, THYM, TGCT, and PRAD tumors, and is expected to guide immunotherapy for 19 tumor types. The model was also effective in identifying patients with tumors amenable to etoposide, camptothecin, cisplatin, or bexarotene treatment. In conclusion, our work highlights the dysregulated features of PUSs and their role in the TME and patient prognosis, providing an initial molecular basis for future exploration of pseudouridine. Studies targeting pseudouridine are expected to lead to the development of potential diagnostic strategies and the evaluation and improvement of antitumor therapies.
Collapse
Affiliation(s)
- Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahe Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mo Geng
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Jiang H, Liu M, Deng Y, Zhang C, Dai L, Zhu B, Ou Y, Zhu Y, Hu C, Yang L, Li J, Bai Y, Yang D. Identification of prostate cancer bone metastasis related genes and potential therapy targets by bioinformatics and in vitro experiments. J Cell Mol Med 2024; 28:e18511. [PMID: 39098992 PMCID: PMC11298316 DOI: 10.1111/jcmm.18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The aetiology of bone metastasis in prostate cancer (PCa) remains unclear. This study aims to identify hub genes involved in this process. We utilized machine learning, GO, KEGG, GSEA, Single-cell analysis, ROC methods to identify hub genes for bone metastasis in PCa using the TCGA and GEO databases. Potential drugs targeting these genes were identified. We validated these results using 16 specimens from patients with PCa and analysed the relationship between the hub genes and clinical features. The impact of APOC1 on PCa was assessed through in vitro experiments. Seven hub genes with AUC values of 0.727-0.926 were identified. APOC1, CFH, NUSAP1 and LGALS1 were highly expressed in bone metastasis tissues, while NR4A2, ADRB2 and ZNF331 exhibited an opposite trend. Immunohistochemistry further confirmed these results. The oxidative phosphorylation pathway was significantly enriched by the identified genes. Aflatoxin B1, benzo(a)pyrene, cyclosporine were identified as potential drugs. APOC1 expression was correlated with clinical features of PCa metastasis. Silencing APOC1 significantly inhibited PCa cell proliferation, clonality, and migration in vitro. This study identified 7 hub genes that potentially facilitate bone metastasis in PCa through mitochondrial metabolic reprogramming. APOC1 emerged as a promising therapeutic target and prognostic marker for PCa with bone metastasis.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yingfei Deng
- Pathology‐DepartmentThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chongjian Zhang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Longguo Dai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Bingyu Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yitian Ou
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chen Hu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Libo Yang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Jun Li
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yu Bai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Delin Yang
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
11
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
12
|
Qu S, Nelson H, Liu X, Semler E, Michell DL, Massick C, Franklin JL, Karijolich J, Weaver AM, Coffey RJ, Liu Q, Vickers KC, Patton JG. 5-Fluorouracil Treatment Represses Pseudouridine-Containing Small RNA Export into Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575751. [PMID: 38293013 PMCID: PMC10827090 DOI: 10.1101/2024.01.15.575751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
5-fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing toxicity due to defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. Here, we examine the impact of 5-FU on the expression and export of small RNAs (sRNAs) into small extracellular vesicles (sEVs). Moreover, we assess the role of 5-FU in regulation of post-transcriptional sRNA modifications (PTxM) using mass spectrometry approaches. EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. PTxMs on cellular and extracellular sRNAs provide yet another layer of gene regulation. We found that treatment of the colorectal cancer (CRC) cell line DLD-1 with 5-FU led to surprising differential export of miRNA snRNA, and snoRNA transcripts. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and secreted EV sRNAs. In contrast, 5-FU exposure led to increased levels of cellular sRNAs containing a variety of methyl-modified bases. Our results suggest that 5-FU exposure leads to altered expression, base modifications, and mislocalization of EV base-modified sRNAs.
Collapse
|
13
|
Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024; 49:12-27. [PMID: 38097411 PMCID: PMC10976346 DOI: 10.1016/j.tibs.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 01/07/2024]
Abstract
The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.
Collapse
Affiliation(s)
- Rebecca Rodell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Robalin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Tan Y, Wang Z, Wang Y, Tian X, Huang Y, Wu G, Lu J. Multi-omics analysis reveals PUS1 triggered malignancy and correlated with immune infiltrates in NSCLC. Aging (Albany NY) 2023; 15:12136-12154. [PMID: 37925171 PMCID: PMC10683629 DOI: 10.18632/aging.205169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the main pathological type of lung cancer. In this study, multi-omics analysis revealed a significant increase of pseudouridine synthase 1 (PUS1) in NSCLC and the high expression of PUS1 was associated with shorter OS (Overall Survival), PFS (Progression Free Survival), and PPS (Post Progression Survival) of NSCLC patients. Clinical subgroup analysis showed that PUS1 may be involved in the occurrence and development of NSCLC. Besides, TIMER, ESTIMATE, and IPS analysis suggested that PUS1 expression was associated with immune cell infiltration, and the expression of PUS1 was significantly negatively correlated with DC cell infiltration. GESA analysis also indicated PUS1 may involve in DNA_REPAIR, E2F_TARGETS, MYC_TARGETS_V2, G2M_CHECKPOINT and MYC_TARGETS_V1 pathways and triggered NSCLC malignancy through MCM5 or XPO1. Furthermore, PUS1 may be a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Yonghuang Tan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhaotong Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingzhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaolu Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yunru Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Guoyong Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jianjun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
15
|
Herranz JM, López-Pascual A, Clavería-Cabello A, Uriarte I, Latasa MU, Irigaray-Miramon A, Adán-Villaescusa E, Castelló-Uribe B, Sangro B, Arechederra M, Berasain C, Avila MA, Fernández-Barrena MG. Comprehensive analysis of epigenetic and epitranscriptomic genes' expression in human NAFLD. J Physiol Biochem 2023; 79:901-924. [PMID: 37620598 PMCID: PMC10636027 DOI: 10.1007/s13105-023-00976-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Alex Clavería-Cabello
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujúe Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray-Miramon
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Borja Castelló-Uribe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
16
|
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Goel A, Franke A, D’Amato M, Bujanda L. Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments. Cancers (Basel) 2023; 15:4688. [PMID: 37835382 PMCID: PMC10571592 DOI: 10.3390/cancers15194688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Some genetic polymorphisms (SNPs) have been proposed as predictors for different colorectal cancer (CRC) outcomes. This work aims to assess their performance in our cohort and find new SNPs associated with them. METHODS A total of 833 CRC cases were analyzed for seven outcomes, including the use of chemotherapy, and stratified by tumor location and stage. The performance of 63 SNPs was assessed using a generalized linear model and area under the receiver operating characteristic curve, and local SNPs were detected using logistic regressions. RESULTS In total 26 of the SNPs showed an AUC > 0.6 and a significant association (p < 0.05) with one or more outcomes. However, clinical variables outperformed some of them, and the combination of genetic and clinical data showed better performance. In addition, 49 suggestive (p < 5 × 10-6) SNPs associated with one or more CRC outcomes were detected, and those SNPs were located at or near genes involved in biological mechanisms associated with CRC. CONCLUSIONS Some SNPs with clinical data can be used in our population as predictors of some CRC outcomes, and the local SNPs detected in our study could be feasible markers that need further validation as predictors.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| | - Ane Etxart
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain; (A.E.); (M.B.); (B.N.); (N.M.S.M.)
| | - Maialen Barrero
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain; (A.E.); (M.B.); (B.N.); (N.M.S.M.)
| | - Beatriz Nafria
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain; (A.E.); (M.B.); (B.N.); (N.M.S.M.)
| | - Nerea Miren Segues Merino
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain; (A.E.); (M.B.); (B.N.); (N.M.S.M.)
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain;
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain; (A.E.); (M.B.); (B.N.); (N.M.S.M.)
| |
Collapse
|
17
|
Jiang W, Wang L, Zhang Y, Li H. Identification and verification of novel immune-related ferroptosis signature with excellent prognostic predictive and clinical guidance value in hepatocellular carcinoma. Front Genet 2023; 14:1112744. [PMID: 37671041 PMCID: PMC10475594 DOI: 10.3389/fgene.2023.1112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Immunity and ferroptosis often play a synergistic role in the progression and treatment of hepatocellular carcinoma (HCC). However, few studies have focused on identifying immune-related ferroptosis gene biomarkers. Methods: We performed weighted gene co-expression network analysis (WGCNA) and random forest to identify prognostic differentially expressed immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs) respectively to run co-expression analysis for prognostic differentially expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs). Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a prognostic predictive model. Differential expression and prognostic analysis based on shared data from multiple sources and experimental means were performed to further verify the 3 modeled genes' biological value in HCC. We ran various performance testing methods to test the model's performance and compare it with other similar signatures. Finally, we integrated composite factors to construct a comprehensive quantitative nomogram for accurate prognostic prediction and evaluated its performance. Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source sequencing data, QRT-PCR, immunohistochemical staining and testing methods fully confirmed the upregulation and significant prognostic influence of the three PR-DE-IRFeCGs in HCC. The model performed well in the performance tests of multiple methods based on the 5 cohorts. Furthermore, our model outperformed other related models in various performance tests. The immunotherapy and chemotherapy guiding value of our signature and the comprehensive nomogram's excellent performance have also stood the test. Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent prognostic prediction and clinical guidance value in HCC.
Collapse
Affiliation(s)
- Wenxiu Jiang
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Lili Wang
- Department of Clinical Research, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yajuan Zhang
- General Medicine, Pingjiang Xincheng Community Health Service Center, Suzhou, China
| | - Hongliang Li
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| |
Collapse
|
18
|
Zhang D, Liu S, Wu Q, Ma Y, Zhou S, Liu Z, Sun W, Lu Z. Prognostic model for hepatocellular carcinoma based on anoikis-related genes: immune landscape analysis and prediction of drug sensitivity. Front Med (Lausanne) 2023; 10:1232814. [PMID: 37502362 PMCID: PMC10369074 DOI: 10.3389/fmed.2023.1232814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) represents a complex ailment characterized by an unfavorable prognosis in advanced stages. The involvement of immune cells in HCC progression is of significant importance. Moreover, metastasis poses a substantial impediment to enhanced prognostication for HCC patients, with anoikis playing an indispensable role in facilitating the distant metastasis of tumor cells. Nevertheless, limited investigations have been conducted regarding the utilization of anoikis factors for predicting HCC prognosis and assessing immune infiltration. This present study aims to identify hepatocellular carcinoma-associated anoikis-related genes (ANRGs), establish a robust prognostic model for HCC, and delineate distinct immune characteristics based on the anoikis signature. Cell migration and cytotoxicity experiments were performed to validate the accuracy of the ANRGs model. Methods Consensus clustering based on ANRGs was employed in this investigation to categorize HCC samples obtained from both TCGA and Gene Expression Omnibus (GEO) cohorts. To assess the differentially expressed genes, Cox regression analysis was conducted, and subsequently, prognostic gene signatures were constructed using LASSO-Cox methodology. External validation was performed at the International Cancer Genome Conference. The tumor microenvironment (TME) was characterized utilizing ESTIMATE and CIBERSORT algorithms, while machine learning techniques facilitated the identification of potential target drugs. The wound healing assay and CCK-8 assay were employed to evaluate the migratory capacity and drug sensitivity of HCC cell lines, respectively. Results Utilizing the TCGA-LIHC dataset, we devised a nomogram integrating a ten-gene signature with diverse clinicopathological features. Furthermore, the discriminative potential and clinical utility of the ten-gene signature and nomogram were substantiated through ROC analysis and DCA. Subsequently, we devised a prognostic framework leveraging gene expression data from distinct risk cohorts to predict the drug responsiveness of HCC subtypes. Conclusion In this study, we have established a promising HCC prognostic ANRGs model, which can serve as a valuable tool for clinicians in selecting targeted therapeutic drugs, thereby improving overall patient survival rates. Additionally, this model has also revealed a strong connection between anoikis and immune cells, providing a potential avenue for elucidating the mechanisms underlying immune cell infiltration regulated by anoikis.
Collapse
Affiliation(s)
- Dengyong Zhang
- Graduate School, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sihua Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiong Wu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhong Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng Lu
- Graduate School, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
19
|
Zhang G, Zhu Y, Tan Y, Chen B, Shan S, Zhang G, Lu J. Higher expression of pseudouridine synthase 7 promotes non-small cell lung cancer progression and suggests a poor prognosis. J Cardiothorac Surg 2023; 18:222. [PMID: 37420297 DOI: 10.1186/s13019-023-02332-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Lung cancer is currently the second most common cancer, and non-small cell lung cancer accounts for about 85% of cases. NSCLC has not been studied for pseudouridine synthase 7 (PUS), a member of the PUS family that is associated with cancer development. Here, we focused on the role and clinical significance of PUS7 in non-small cell lung cancer. AIM To explore the role of PUS7 in NSCLC and its clinical significance. METHODS We downloaded datasets from the TCGA database and CPTAC database. In normal bronchial epithelial cells as well as NSCLC cell lines, RT-PCR and Western blot were used to quantify PUS7 expression. The role of PUS7 in NSCLC has been investigated by CCK8, migration assay, migration assay, and flow cytometry. PUS7 expression in tumor tissues was detected by immunohistochemical staining, and we evaluated the influence of PUS7 expression on the prognosis of NSCLC patients after surgery using Cox regression analysis, both univariate and multivariate. RESULTS NSCLC cell lines and tissues expressed high levels of PUS7, and PUS7 was found to influence the proliferation, migration, and invasion of cancer cells without affecting their apoptosis. There was a worse prognosis for NSCLC patients who have higher PUS7 expression, suggesting that PUS7 was an independent indicator of prognosis (P = .05).
Collapse
Affiliation(s)
- Guihong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd street, No. 58, Guangzhou, Guangdong, 510080, China
| | - Yongde Zhu
- Emergency Department, Hainan Province Nongken Sanya Hospital, Jiefang 4th Road, No. 1154, Sanya, Hainan, 571159, China
| | - Yonghuang Tan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd street, No. 58, Guangzhou, Guangdong, 510080, China
| | - Biao Chen
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Dongfeng East Road, No. 651, Guangzhou, Guangdong, 510060, China
| | - Shichao Shan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd street, No. 58, Guangzhou, Guangdong, 510080, China
| | - Gengyu Zhang
- First School of Clinical Medicine, Guangdong Medical University, Wenming East Road, No. 2, Zhanjiang, Guangdong, 524023, China
| | - Jianjun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd street, No. 58, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
20
|
Lan C, Huang X, Liao X, Zhou X, Peng K, Wei Y, Han C, Peng T, Wang J, Zhu G. PUS1 May Be a Potential Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Pharmgenomics Pers Med 2023; 16:337-355. [PMID: 37091827 PMCID: PMC10115212 DOI: 10.2147/pgpm.s405621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective The mechanisms of pseudouridine synthase (PUS) are not definite in hepatocellular carcinoma (HCC), the objective of this study is to investigate the effect of PUS genes in HCC. Materials and Methods Differentially expressed and prognostic gene of PUS enzymes was identified based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. For the identified gene, pseudouridine synthase 1 (PUS1), was used for further research. The clinicopathological feature of PUS1 was analyzed by Student's t-test. Prognostic significance was explored by Kaplan-Meier (KM) analysis and Cox proportional hazards regression model. Receiver operating characteristic (ROC) curve was applied to appraise diagnostic and prognostic value. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were implemented to explore mechanism of PUS1. A Guangxi cohort was applied to verify differential expression. In vitro cell experiments were implemented to investigate the influence for proliferation, reactive oxygen species (ROS) level, migration, and invasion of HCC cells after a knockdown of PUS1. Results PUS1 was significantly overexpressed in HCC tissues, and patients with high PUS1 were related to unpromising clinicopathological features. Survival analysis revealed high PUS1 expression was associated with a poor overall survival (OS) and 1 year-recurrence free survival (RFS), was an independent risk factor. Meanwhile, ROC curve showed that PUS1 had a diagnostic and prognostic significance to HCC. Functional enrichment analysis implied that PUS1 may be involved in metabolic pathways, mitochondrial function, non-alcoholic fatty liver disease (NAFLD), and some important carcinogenic pathways. Cell assays revealed that knockdown of PUS1 significantly constrained the migration, proliferation, invasion and improved the ROS level of HCC cells. Conclusion PUS1 may be a prognostic biomarker and a underlying treatment target for HCC.
Collapse
Affiliation(s)
- Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xinlei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Kai Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Jianyao Wang, Department of General Surgery, Shenzhen Children’s Hospital, Lianhua District, Shenzhen, 518026, Guangdong Province, People’s Republic of China, Email
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
- Correspondence: Guangzhi Zhu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email
| |
Collapse
|