1
|
Katoch M, Chahota RK. Mapping of Genomic Regions for Biochemical and Physiological Parameters Contributing Towards Drought Tolerance in Horsegram (Macrotyloma uniflorum (Lam.) Verdc.). Appl Biochem Biotechnol 2024; 196:6638-6652. [PMID: 38393583 DOI: 10.1007/s12010-024-04858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy legume which can be grown in varied soil and temperature regimes. Though it has numerous, nutritive and medicinal benefits, it still lags behind other legumes in terms of genomic resources and genetic improvement. This crop is mostly cultivated on marginal and drought-prone area; thus, genetics of drought stress tolerance can be understood by studying the various drought parameters. To get insight, quantitative trait loci for drought-tolerant traits were identified using an intraspecific mapping population of 162 F8 recombinant inbred lines derived from a cross between HPKM249 and HPK4. The linkage map already developed was used along with the phenotypic data for biochemical and physiological parameters to identify genomic regions which are linked to drought tolerance. In the study, a total of seven QTLs were identified for ten different drought-related traits. One QTL for malondialdehyde content on linkage group 2, two QTLs for root length on linkage groups 3 and 9, one QTL each for proline and chlorophyll content under drought stress on linkage group 4, and one QTL each for root dry weight and root fresh weight on linkage group 5 were identified using composite interval mapping. The identified QTLs will be utilized in marker-assisted breeding and increase our understanding on the physiology of drought stress tolerance.
Collapse
Affiliation(s)
- Megha Katoch
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agriculture University, Palampur, 176062, India
| | - Rakesh Kumar Chahota
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agriculture University, Palampur, 176062, India.
| |
Collapse
|
2
|
Wang Z, Yung WS, Gao Y, Huang C, Zhao X, Chen Y, Li MW, Lam HM. From phenotyping to genetic mapping: identifying water-stress adaptations in legume root traits. BMC PLANT BIOLOGY 2024; 24:749. [PMID: 39103780 DOI: 10.1186/s12870-024-05477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.
Collapse
Affiliation(s)
- Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Yamin Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cheng Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xusheng Zhao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Kudapa H, Ghatak A, Barmukh R, Chaturvedi P, Khan A, Kale S, Fragner L, Chitikineni A, Weckwerth W, Varshney RK. Integrated multi-omics analysis reveals drought stress response mechanism in chickpea (Cicer arietinum L.). THE PLANT GENOME 2024; 17:e20337. [PMID: 37165696 DOI: 10.1002/tpg2.20337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 05/12/2023]
Abstract
Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites (fructose, galactose, glucose, myoinositol, galactinol, and raffinose) that showed a significant correlation with galactose metabolism. Integration of root-omics data also revealed some key candidate genes underlying the drought-responsive "QTL-hotspot" region. These results provided key insights into complex molecular mechanisms underlying drought stress response in chickpea.
Collapse
Affiliation(s)
- Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Aamir Khan
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip Kale
- The Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Lena Fragner
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Centre (VIME), University of Vienna, Vienna, Austria
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Varshney RK, Barmukh R, Bentley A, Nguyen HT. Exploring the genomics of abiotic stress tolerance and crop resilience to climate change. THE PLANT GENOME 2024; 17:e20445. [PMID: 38481118 DOI: 10.1002/tpg2.20445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Alison Bentley
- ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Kushwah A, Bhatia D, Singh G, Singh I, Vij S, Bindra S, Siddique KHM, Nayyar H, Singh S. Phenotypic evaluation of agronomic and root related traits for drought tolerance in recombinant inbred line population derived from a chickpea cultivar ( C. arietinum L.) and its wild relative ( C. reticulatum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1437-1452. [PMID: 36051229 PMCID: PMC9424481 DOI: 10.1007/s12298-022-01218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress that drastically reduces chickpea yields. The present study was aimed to identify drought-responsive traits in chickpea by screening a recombinant inbred line population derived from an inter-specific cross between drought cultivar of GPF2 (C. arietinum L.) and drought sensitive accession of ILWC292 (C. reticulatum), at two locations in India. Twenty-one traits, including twelve morphological and physiological traits and nine root-related traits were measured under rainfed (drought-stress) and irrigated conditions (no-stress). High genotypic variation was observed among RILs for yield and root traits indicated that selection in these germplasms would be useful in achieving genetic progress. Both correlation and principal component analysis revealed that plant height, number of pods per plant, biomass, 100-seed weight, harvest index, membrane permeability index, and relative leaf water content were significantly correlated with yield under both irrigated and drought stress environments. Root length had significant positive correlations with all root-related traits except root length density in drought-stressed plants. Path analysis and multiple and stepwise regression analyses showed that number of pods per plant, biomass, and harvest index were major contributors to yield under drought stress conditions. Thus, a holistic approach across these analyses identified number of pods per plant, biomass, harvest index, and root length as key traits for improving chickpea yield through indirect selection for developing drought-tolerant cultivars. Overall, on the basis of yield components morphological and root traits, a total of 15 promising RILs were identified for their use in chickpea breeding programs for developing drought tolerant cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01218-z.
Collapse
Affiliation(s)
- Ashutosh Kushwah
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Gurpreet Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Suruchi Vij
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | | | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| |
Collapse
|