1
|
Ketchum RN, Smith EG, Toledo LM, Leach WB, Padillo-Anthemides N, Baxevanis AD, Reitzel AM, Ryan JF. Rapid speciation in the holopelagic ctenophore Mnemiopsis following glacial recession. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617593. [PMID: 39574589 PMCID: PMC11580945 DOI: 10.1101/2024.10.10.617593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Understanding how populations diverge is one of the oldest and most compelling questions in evolutionary biology. An in depth understanding of how this process operates in planktonic marine animals, where barriers for gene flow are seemingly absent, is critical to understanding the past, present, and future of ocean life. Mnemiopsis plays an important ecological role in its native habitat along the Atlantic coast of the Americas and is highly destructive in its non-native habitats in European waters. Although historical literature described three species of Mnemiopsis, the lack of stable morphological characters has led to the collapse of this group into a single species, Mnemiopsis leidyi. We generate high-quality reference genomes and use a whole-genome sequencing approach to reveal that there are two species of Mnemiopsis along its native range and show that historical divergence between the two species coincides with historical glacial melting. We define a hybridization zone between species and highlight that environmental sensing genes likely contribute to the invasive success of Mnemiopsis. Overall, this study provides insights into the fundamental question of how holopelagic species arise without clear barriers to gene flow and sheds light on the genomic mechanisms important for invasion success in a highly invasive species.
Collapse
Affiliation(s)
- Remi N Ketchum
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward G Smith
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Leandra M Toledo
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Whitney B Leach
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
2
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
3
|
Norekian TP, Moroz LL. Recording cilia activity in ctenophores: effects of nitric oxide and low molecular weight transmitters. Front Neurosci 2023; 17:1125476. [PMID: 37332869 PMCID: PMC10272528 DOI: 10.3389/fnins.2023.1125476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Cilia are the major effectors in Ctenophores, but very little is known about their transmitter control and integration. Here, we present a simple protocol to monitor and quantify cilia activity and provide evidence for polysynaptic control of cilia coordination in ctenophores. We also screened the effects of several classical bilaterian neurotransmitters (acetylcholine, dopamine, L-DOPA, serotonin, octopamine, histamine, gamma-aminobutyric acid (GABA), L-aspartate, L-glutamate, glycine), neuropeptide (FMRFamide), and nitric oxide (NO) on cilia beating in Pleurobrachia bachei and Bolinopsis infundibulum. NO and FMRFamide produced noticeable inhibitory effects on cilia activity, whereas other tested transmitters were ineffective. These findings further suggest that ctenophore-specific neuropeptides could be major candidates for signal molecules controlling cilia activity in representatives of this early-branching metazoan lineage.
Collapse
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Departments of Neuroscience and McKnight, Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023; 618:110-117. [PMID: 37198475 PMCID: PMC10232365 DOI: 10.1038/s41586-023-05936-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA.
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|