1
|
Ong SS, Ho PJ, Khng AJ, Tan BKT, Tan QT, Tan EY, Tan SM, Putti TC, Lim SH, Tang ELS, Li J, Hartman M. Genomic Insights into Idiopathic Granulomatous Mastitis through Whole-Exome Sequencing: A Case Report of Eight Patients. Int J Mol Sci 2024; 25:9058. [PMID: 39201744 PMCID: PMC11354296 DOI: 10.3390/ijms25169058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic inflammation and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on the protein-coding regions of the genome, where most disease-related mutations often occur, whole-exome sequencing (WES) is a powerful approach for investigating rare and complex conditions, like IGM. We report WES results on paired blood and tissue samples from eight IGM patients. Samples were processed using standard genomic protocols. Somatic variants were called with two analytical pipelines: nf-core/sarek with Strelka2 and GATK4 with Mutect2. Our WES study of eight patients did not find evidence supporting a clear genetic component. The discrepancies between variant calling algorithms, along with the considerable genetic heterogeneity observed amongst the eight IGM cases, indicate that common genetic drivers are not readily identifiable. With only three genes, CHIT1, CEP170, and CTR9, recurrently altering in multiple cases, the genetic basis of IGM remains uncertain. The absence of validation for somatic variants by Sanger sequencing raises further questions about the role of genetic mutations in the disease. Other potential contributors to the disease should be explored.
Collapse
Affiliation(s)
- Seeu Si Ong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Peh Joo Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
| | - Alexis Jiaying Khng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
| | - Benita Kiat Tee Tan
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Qing Ting Tan
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Swee Ho Lim
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | | | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
2
|
Sergi A, Beltrame L, Marchini S, Masseroli M. Integrated approach to generate artificial samples with low tumor fraction for somatic variant calling benchmarking. BMC Bioinformatics 2024; 25:180. [PMID: 38720249 PMCID: PMC11077792 DOI: 10.1186/s12859-024-05793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High-throughput sequencing (HTS) has become the gold standard approach for variant analysis in cancer research. However, somatic variants may occur at low fractions due to contamination from normal cells or tumor heterogeneity; this poses a significant challenge for standard HTS analysis pipelines. The problem is exacerbated in scenarios with minimal tumor DNA, such as circulating tumor DNA in plasma. Assessing sensitivity and detection of HTS approaches in such cases is paramount, but time-consuming and expensive: specialized experimental protocols and a sufficient quantity of samples are required for processing and analysis. To overcome these limitations, we propose a new computational approach specifically designed for the generation of artificial datasets suitable for this task, simulating ultra-deep targeted sequencing data with low-fraction variants and demonstrating their effectiveness in benchmarking low-fraction variant calling. RESULTS Our approach enables the generation of artificial raw reads that mimic real data without relying on pre-existing data by using NEAT, a fine-grained read simulator that generates artificial datasets using models learned from multiple different datasets. Then, it incorporates low-fraction variants to simulate somatic mutations in samples with minimal tumor DNA content. To prove the suitability of the created artificial datasets for low-fraction variant calling benchmarking, we used them as ground truth to evaluate the performance of widely-used variant calling algorithms: they allowed us to define tuned parameter values of major variant callers, considerably improving their detection of very low-fraction variants. CONCLUSIONS Our findings highlight both the pivotal role of our approach in creating adequate artificial datasets with low tumor fraction, facilitating rapid prototyping and benchmarking of algorithms for such dataset type, as well as the important need of advancing low-fraction variant calling techniques.
Collapse
Affiliation(s)
- Aldo Sergi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Luca Beltrame
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Marco Masseroli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| |
Collapse
|
3
|
Li X, You J, Hong L, Liu W, Guo P, Hao X. Neoantigen cancer vaccines: a new star on the horizon. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0395. [PMID: 38164734 PMCID: PMC11033713 DOI: 10.20892/j.issn.2095-3941.2023.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells. One of the most exciting advances within this field is the targeting of neoantigens, which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells. Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment, early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors. Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens. Consequently, personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences. This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines, and also discusses challenges and future perspectives for this innovative approach, particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.
Collapse
Affiliation(s)
- Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Jian You
- Department of Thoracic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- Department of Thoracic Oncology Surgery, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Liping Hong
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Weijiang Liu
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Peng Guo
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Xishan Hao
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| |
Collapse
|
4
|
Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, D’Alise AM. Personalized Cancer Vaccines Go Viral: Viral Vectors in the Era of Personalized Immunotherapy of Cancer. Int J Mol Sci 2023; 24:16591. [PMID: 38068911 PMCID: PMC10706435 DOI: 10.3390/ijms242316591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of personalized cancer vaccines is to elicit potent and tumor-specific immune responses against neoantigens specific to each patient and to establish durable immunity, while minimizing the adverse events. Over recent years, there has been a renewed interest in personalized cancer vaccines, primarily due to the advancement of innovative technologies for the identification of neoantigens and novel vaccine delivery platforms. Here, we review the emerging field of personalized cancer vaccination, with a focus on the use of viral vectors as a vaccine platform. The recent advancements in viral vector technology have led to the development of efficient production processes, positioning personalized viral vaccines as one of the preferred technologies. Many clinical trials have shown the feasibility, safety, immunogenicity and, more recently, preliminary evidence of the anti-tumor activity of personalized vaccination, fostering active research in the field, including further clinical trials for different tumor types and in different clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Morena D’Alise
- Nouscom, Via di Castel Romano 100, 00128 Rome, Italy; (L.S.); (G.L.); (V.R.); (L.S.); (G.C.); (E.S.)
| |
Collapse
|
5
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
6
|
Wang R, Zhang X, He C, Guo W. An effective prognostic model for assessing prognosis of non-small cell lung cancer with brain metastases. Front Genet 2023; 14:1156322. [PMID: 37124617 PMCID: PMC10143500 DOI: 10.3389/fgene.2023.1156322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Brain metastasis, with an incidence of more than 30%, is a common complication of non-small cell lung cancer (NSCLC). Therefore, there is an urgent need for an assessment method that can effectively predict brain metastases in NSCLC and help understand its mechanism. Materials and methods: GSE30219, GSE31210, GSE37745, and GSE50081 datasets were downloaded from the GEO database and integrated into a dataset (GSE). The integrated dataset was divided into the training and test datasets. TCGA-NSCLC dataset was regarded as an independent verification dataset. Here, the limma R package was used to identify the differentially expression genes (DEGs). Importantly, the RiskScore model was constructed using univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis. Moreover, we explored in detail the tumor mutational signature, immune signature, and sensitivity to treatment of brain metastases in NSCLC. Finally, a nomogram was built using the rms package. Results: First, 472 DEGs associated with brain metastases in NSCLC were obtained, which were closely associated with cancer-associated pathways. Interestingly, a RiskScore model was constructed using 11 genes from 472 DEGs, and the robustness was confirmed in GSE test, entire GSE, and TCGA datasets. Samples in the low RiskScore group had a higher gene mutation score and lower immunoinfiltration status. Moreover, we found that the patients in the low RiskScore group were more sensitive to the four chemotherapy drugs. In addition, the predictive nomogram model was able to effectively predict the outcome of patients through appropriate RiskScore stratification. Conclusion: The prognostic RiskScore model we established has high prediction accuracy and survival prediction ability for brain metastases in NSCLC.
Collapse
Affiliation(s)
- Rong Wang
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
| | - Xing Zhang
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
| | - Changshou He
- Department of Oncology, HaploX Biotechnology, Shenzhen, China
| | - Wei Guo
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
- *Correspondence: Wei Guo,
| |
Collapse
|