1
|
Li Z, Chen Y, Zhao Y, Li Q. The Methylation and Expression of LINC00511, an Important Angiogenesis-Related lncRNA in Stomach Adenocarcinoma. Int J Mol Sci 2025; 26:2132. [PMID: 40076759 PMCID: PMC11900454 DOI: 10.3390/ijms26052132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Stomach adenocarcinoma (STAD) has high incidence and mortality rates. Long non-coding RNAs (lncRNAs) and angiogenesis are closely related to the pathogenesis and metastasis of STAD. Recently, emerging evidence demonstrated that DNA methylation plays crucial roles in the development of STAD. This study explored the relationship between DNA methylation and the abnormal expression of angiogenesis-related lncRNAs (ARlncRNAs) in stomach adenocarcinoma, aiming to identify prognostic biomarkers. Moreover, a Cox analysis and Lasso regression were used to establish an ARlncRNA feature set related to angiogenesis. The prognostic model was evaluated by using a Kaplan-Meier (KM) analysis, ROC curves, and nomograms. Based on the identified 18 key ARlncRNAs, a prognostic predictive model was constructed. In addition, a specific ARlncRNA with abnormal methylation in the model, LINC00511, showed significant differences in expression and methylation across different subgroups. The methylation and expression of LINC00511 were analyzed by a correlation and co-expression analysis. The correlation analysis indicated that promoter methylation may improve LINC00511 expression. Further analysis found 355 mRNAs co-expressed with LINC00511 which may interact with 6 miRNAs to regulate target gene expression. The abnormal methylation of LINC00511 could significantly contribute to the progression of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zhiying Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Yuanyuan Zhao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Chen K, Dai P, Gu L. Building endoplasmic reticulum stress-related LncRNAs signatures of lung adenocarcinoma. J Gene Med 2024; 26:e3731. [PMID: 39146558 DOI: 10.1002/jgm.3731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) could be a strategy for treating malignant tumors. Moreover, long noncoding RNAs (lncRNAs) can promote tumorigenesis and progression, and forecast the prognosis of cancers. Nevertheless, the prognostic value of ERS-related lncRNAs has not been reported in lung adenocarcinoma (LUAD). METHODS The messenger RNA (mRNA), microRNA (miRNA) and lncRNA expression data related to LUAD were obtained in public databases (TCGA and GEO databases). Prognostic ERS-related differentially expressed lncRNAs (ERS-DELs) were obtained and used to build an ERS-related model by Cox regression analysis. Moreover, we further screened independent prognostic elements and built a nomogram. Furthermore, enrichment analysis of genes was conducted to investigate the functions. A lncRNA-miRNA-mRNA network was built to explore mechanism of lncRNAs. Finally, qRT-PCR was utilized to examine the expression levels of lncRNAs. RESULTS 30 ERS-DELs were identified, and an ERS-related signature was built based on AF131215.2, LINC00472, LINC01352, RP1-78O14.1, RP11-253E3.3, RP11-98D18.9, and SNHG12. Gene set enrichment analysis indicated that genes in the high-risk group were chiefly focused on the regulation of mRNA binding, and genes in the low-risk group were significantly focused on protein localization to cilia. A lncRNA-miRNA-mRNA network, containing 7 signature lncRNAs, 23 miRNAs, and 128 mRNAs, was also established. Eventually, quantitative real-time polymerase chain reaction was used to confirm that seven prognostic lncRNAs had a consistent expression with the analysis. CONCLUSIONS An ERS-related signature containing seven prognostic lncRNAs was built, which offered new thinking concerning the role of ERS-related lncRNAs in LUAD.
Collapse
Affiliation(s)
- Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peiling Dai
- The Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lizhong Gu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Chen G, Zhang T, Li F, Cui C, Huang Z, Gou X, Song Y, Li Y. A Model to Predict Prognosis of Renal Cell Clear Cell Carcinoma Based on 3 Angiogenesis-related Long Non-coding RNAs. J Cancer 2024; 15:3481-3494. [PMID: 38817877 PMCID: PMC11134422 DOI: 10.7150/jca.94685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Tumor angiogenesis is closely related to the progression of clear cell renal cell carcinoma (ccRCC). Long non-coding RNAs (lncRNAs) regulating angiogenesis could be potential biomarkers for predicting ccRCC prognosis. With this study, we aimed to construct a prognostic model based on lncRNAs and explore its underlying mechanisms. Methods: RNA data and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Angiogenesis-related genes (ARGs) were extracted from the Molecular Signatures database. Pearson correlation and LASSO and COX regression analyses were performed to identify survival-related AR-lncRNAs (sAR-lncRNAs) and construct a prognostic model. The predictive power of the prognostic model was verified according to Kaplan‒Meier curve, receiver operating characteristic (ROC) curve and nomogram analyses. The correlation between the prognostic model and clinicopathological characteristics was assessed via univariate and multivariate analyses. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was subsequently performed to elucidate the mechanisms of the sAR-lncRNAs. In vitro qPCR, immunohistochemistry, migration and invasion assays were conducted to confirm the angiogenic function of sAR-lncRNAs. Results: Three sAR-lncRNAs were used to construct a prognostic model. The model was moderately accurate in predicting 1- , 3- and 5-year ccRCC prognosis, and the risk score according to this model was closely related to clinicopathological characteristics such as T grade and T stage. A nomogram was constructed to precisely estimate the overall survival of ccRCC patients. KEGG enrichment analysis indicated that the MAPK and Notch pathways were highly enriched in high-risk patients. Additionally, we found that the expression of the lncRNAs AC005324.4 and AC104964.4 in the prognostic model was lower in ccRCC cell lines and cancer tissues than in the HK-2 cell line and paracancerous tissues, while the expression of the lncRNA AC087482.1 showed the opposite trend. In a coculture model, knockdown of lncRNA AC005324.4 and lncRNA AC104964.4 significantly promoted the migration and invasion of human umbilical vein endothelial cells (HUVECs), but siR-AC087482.1 transfection alleviated these effects. Conclusions: We constructed a prognostic model based on 3 sAR-lncRNAs and validated its value in clinicopathological characteristics and prognostic prediction of ccRCC patients, providing a new perspective for ccRCC treatment decision making.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Tiansheng Zhang
- Department of Urology, Mianyang Central Hospital, University of Electronic Science and Technology of China, Sichuan Province, 621099, China
| | - Feng Li
- Department of Urology, Three Gorges Hospital of Chongqing University, Chongqing, 404031, China
| | - Chi Cui
- Department of General Surgery, The Third People's Hospital of Chengdu, Sichuan Province, 610014, China
| | - Zhiyong Huang
- Department of Vascular Surgery, Yibin First People's Hospital, Sichuan Province, 644000, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Yajun Song
- Department of Urology, Xinqiao Hospital of the Army Medical University, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
4
|
Wang B, Hou C, Yu X, Liu J, Wang J. The prognostic value of sialylation-related long non-coding RNAs in lung adenocarcinoma. Sci Rep 2024; 14:8879. [PMID: 38632255 PMCID: PMC11024174 DOI: 10.1038/s41598-024-59130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
There has been increasing interest in the role of epigenetic modification in cancers recently. Among the various modifications, sialylation has emerged as a dominant subtype implicated in tumor progression, metastasis, immune evasion, and chemoresistance. The prognostic significance of sialylation-related molecules has been demonstrated in colorectal cancer. However, the potential roles and regulatory mechanisms of sialylation in lung adenocarcinoma (LUAD) have not been thoroughly investigated. Through Pearson correlation, univariate Cox hazards proportional regression, and random survival forest model analyses, we identified several prognostic long non-coding RNAs (lncRNAs) associated with aberrant sialylation and tumor progression, including LINC00857, LINC00968, LINC00663, and ITGA9-AS1. Based on the signatures of four lncRNAs, we classified patients into two clusters with different landscapes using a non-negative matrix factorization approach. Collectively, patients in Cluster 1 (C1) exhibited worse prognoses than those in Cluster 2 (C2), as well as heavier tumor mutation burden. Functional enrichment analysis showed the enrichment of several pro-tumor pathways in C1, differing from the upregulated Longevity and programmed cell death pathways in C2. Moreover, we profiled immune infiltration levels of important immune cell lineages in two subgroups using MCPcounter scores and single sample gene set enrichment analysis scores, revealing a relatively immunosuppressive microenvironment in C1. Risk analysis indicated that LINC00857 may serve as a pro-tumor regulator, while the other three lncRNAs may be protective contributors. Consistently, we observed upregulated LINC00857 in C1, whereas increased expressive levels of LINC00968, LINC00663, and ITGA9-AS1 were observed in C2. Finally, drug sensitivity analysis suggested that patients in the two groups may benefit from different therapeutic strategies, contributing to precise treatment in LUAD. By integrating multi-omics data, we identified four core sialylation-related lncRNAs and successfully established a prognostic model to distinguish patients with different characterizations. These findings may provide some insights into the underlying mechanism of sialylation, and offer a new stratification way as well as clinical guidance in LUAD.
Collapse
Grants
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 2022ZD08 National Traditional Chinese Medicine Inheritance and Innovation Center, the First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, China
- 20241105 Administration of Traditional Chinese Medicine of Guangdong Province, China
- 20241105 Administration of Traditional Chinese Medicine of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
- 20221402 Science and Technology Planning Project of Guangdong Province, China
Collapse
Affiliation(s)
- Beiru Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Chengyu Hou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiang Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiaxin Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiyong Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
5
|
González-Sánchez GD, Granados-López AJ, López-Hernández Y, Robles MJG, López JA. miRNAs as Interconnectors between Obesity and Cancer. Noncoding RNA 2024; 10:24. [PMID: 38668382 PMCID: PMC11055034 DOI: 10.3390/ncrna10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.
Collapse
Affiliation(s)
- Grecia Denisse González-Sánchez
- Doctorate in Biosciences, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos C.P. 47620, Mexico;
| | - Angelica Judith Granados-López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Yamilé López-Hernández
- Laboratory of Proteomics and Metabolomics, Cátedras-CONACYT, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Mayra Judith García Robles
- Biotechnology Department of the Polytechnic, University of Zacatecas, Fresnillo, Zacatecas C.P. 99059, Mexico
| | - Jesús Adrián López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| |
Collapse
|