1
|
Pan J, Fu B, Huang S, Jiang Y, Zhou X, Zhou M, Yu Z, Geng X, Zhu Y, Zheng H, Gong Y, Huang D, Guo L. Downregulated granzyme M expression: implications for the immune system and prognosis of thyroid cancer. Gene 2025:149494. [PMID: 40228756 DOI: 10.1016/j.gene.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Thyroid carcinoma (THCA), the most prevalent endocrine system cancer, is rising worldwide. Granzyme family member GZMM causes tumor cell inflammation and programmed cell death. However, the role of GZMM in THCA has not been investigated. Bioinformatics analysis and assays showed that THCA GZMM protein levels were down-regulated and associated with certain clinicopathological features. Additionally, univariate and multivariate Cox analysis and ROC curve analysis showed that low GZMM expression was related with poor overall survival and might be employed as a prognostic and diagnostic factor. We used functional tests to examine how GZMM affected angiogenesis, invasion, and migration in vitro. TIMER showed a link between GZMM expression, immune cell infiltration, and tumor purity. Overexpression of GZMM also greatly boosted CD8 + T cell-attracting chemokines. TCGA data analysis yielded a GZMM and epigenetic modification-related gene risk prediction model. Overall, GZMM inhibits tumor invasion, migration, and angiogenesis, and is closely related to the immune microenvironment, significantly associated with poor prognosis in THCA patients.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China; First College of Clinical Medicine, Nanchang University, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, China
| | | | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Cuproptosis regulation by long noncoding RNAs: Mechanistic insights and clinical implications in cancer. Arch Biochem Biophys 2025; 765:110324. [PMID: 39900259 DOI: 10.1016/j.abb.2025.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although survival rates have been improved in recent years, the prognosis of many cancer types remains inadequate, mostly owing to treatment resistance. Moreover, there is a continued need for exploring novel and reliable tumor markers to achieve accurate diagnosis. Understanding the molecular complexity of cancer allows for the development of more effective and personalized treatments and facilitates the discovery of biomarkers that surpass traditional ones and assist in cancer diagnosis and monitoring disease progression and response to treatment. Recent studies exploring the complexity of cancer biology have identified a new form of cell death, known as cuproptosis, which is driven by the accumulation of copper and subsequent stress induced by dysregulation of copper homeostasis. Increased copper level enables cancer cells to maintain their accelerated growth rates and metastatic potential, yet these cells can evade cuproptosis. Long noncoding RNAs (lncRNAs) have been recognized for their pivotal role in different hallmarks of cancer, including resistance to cell death. They have been found to be implicated in controlling copper balance and cuproptosis. Besides, lncRNAs associated with cuproptosis pathway have demonstrated their potential as diagnostic and prognostic cancer biomarkers as well as indicators of treatment response. Our review aims to summarize recent studies focusing on the intricate relationship between lncRNAs and cuproptosis and explore the mechanisms by which lncRNAs can modulate copper homeostasis and regulate cuproptosis pathway. We also highlight recent discoveries concerning the role of cuproptosis-related lncRNAs in diagnosis, prognosis, and therapy of different types of cancer. By elucidating the significance of cuproptosis-related lncRNAs, this review provides insights into how these lncRNAs can be used to develop new therapeutic strategies to improve treatment outcomes.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk, Cairo, Postal Code: 11837, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Mariam A Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| |
Collapse
|
3
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Zhou T, Li Z, Jiang Y, Su K, Xu C, Yi H. Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer. Cancer Gene Ther 2024; 31:507-516. [PMID: 38316961 PMCID: PMC11016468 DOI: 10.1038/s41417-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Thyroid cancer is a prevalent endocrine malignancy with increasing incidence in recent years. Although most thyroid cancers grow slowly, they can become refractory, leading to a high mortality rate once they exhibit recurrence, metastasis, resistance to radioiodine therapy, or a lack of differentiation. However, the mechanisms underlying these malignant characteristics remain unclear. Circular RNAs, a type of closed-loop non-coding RNAs, play multiple roles in cancer. Several studies have demonstrated that circular RNAs significantly influence the development of thyroid cancers. In this review, we summarize the circular RNAs identified in thyroid cancers over the past decade according to the hallmarks of cancer. We found that eight of the 14 hallmarks of thyroid cancers are regulated by circular RNAs, whereas the other six have not been reported to be correlated with circular RNAs. This review is expected to help us better understand the roles of circular RNAs in thyroid cancers and accelerate research on the mechanisms and cure strategies for thyroid cancers.
Collapse
Affiliation(s)
- Tianjiao Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|